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Abstract: The dependence of dynamic shear and bulk moduli on void ratio and mean effective stress 
is analysed. After a short discussion, a form of functional dependence proposed by Stoll has been 
chosen as the most promising. Using experimental data for three kinds of the Monterey sand and the 
Warsaw Pliocene clay (taken from literature) the regression and multiregression analyses have been 
carried out in order to identify the value of material constants appearing in the expressions discussed.  
The analysis has firmly confirmed (high correlations and very good values of other statistics) that the 
general relationship proposed by Stoll has a character of a physical law. The exponent n in this gen-
eral model is relatively nonsensitive to a kind of soil, but the parameter related to the void ratio is 
strongly dependent on it. Both these parameters are different for bulk and shear moduli. Some other 
conclusions concerning the nature of this dependence have been also formulated. 

1. FORMULATION OF THE PROBLEM 

The values of dynamic shear and bulk moduli are fundamentals of any reliable 
constitutive model of soils. Its correct approximation allows us to analyse wave 
propagation, vibrations and design of foundations for dynamic loading. Even compu-
tation of static settlement needs the realistic estimation of shear modulus. The values 
of dynamical moduli are crucial for determination of leading, pseudoelastic terms in 
the rate-type constitutive equations. 

Nowadays, the most common expression linking the shear modulus with soils pa-
rameters and mean stress is that attributed to HARDIN and BLACK [2]: 

 2/1
0)( σ ′= eAfG . (1) 

In expression (1), G stands for the shear modulus, A is a material constant, f (e) de-
notes a function of void ratio e, while 0σ ′  is mean effective stress. The influence of the 
two most important factors: the void ratio e and mean effective stress 0σ ′  on G is 
given in (1). The coefficient A is specific to a kind of soil. The value n = 0.5 of the 
power of the mean effective stress in (1) has been assumed a priori based on the Hertz 
research on the stress distribution in bodies in contact and on the research of Mindlin, 
Cattaneo, Duffy or Deresiewicz. The corresponding references are listed in the works 
by KISIEL and LYSIK [5] or STOLL [7]. These results are valid for the strains whose 
values vary in the range of 10–5–10–7. 
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The form of the function f (e) can be justified by a hypothesis that a measured ve-
locity of shear wave divided by square root of mean effective stress is linear with re-
spect to void ratio: 

 beavs −=
′ 4/1
0σ

. (2) 

In the above expression, vs stands for shear wave velocity, while a and b are con-
stant parameters. Taking into account the well-known definition of the shear modulus 
we obtain immediately: 
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In the above expression, ρs denotes a specific density, and c is a new constant equal 
to a/b. Formula (3) is the most known form of the expression (1) commonly used in soil 
dynamics since the sixties of the twentieth century. In 1988, STOLL [7] published differ-
ent form of the expression for shear modulus. His formula is based on a large number of 
samples of marine sediments. The number of measurements that supported his formula 
was about 100 times higher than that of Black and Hardy. Using multiple linear regres-
sion method, Stoll proposed the following formula for the shear modulus: 

 nbeaG 0)exp( σ ′−= . (4) 

Now, three material parameters are to be defined: a that depends on material prop-
erties, b that determines a quantitative influence of the void ratio, and n which accord-
ing to the Hertz law must be much lower than 1.0. 

After abridging the variables equation (4) is represented by the following linear 
form: 

 0lnlnln σ ′+−= nbeaG . (5) 

Stoll proposed b = 1.54 and n = 0.448 as common parameters for most of the soils. 
Also Black and Hardin argue that the exponent n is common to cohesive soils. How-
ever, other experimental results obtained without eliminating the influence of void 
ratio show that n varies between 0.7 and 1.0. This is in the case of the so-called “ini-
tial” Young moduli Eoi used in the zero-order hypoelastic models of DUNCAN and 
CHANG [1]. The values of n for glacial tills from Łódź and Weald London clays [3], 
[4] are equal to 0.69 and 1.0, respectively. 

The purpose of the paper was to explain these differences. Relation (6) represent-
ing laboratory tests and relation (7) for in situ observations make a pood starting point 
for this: 
 0logloglog σ ′+−= nbeaG , (6) 
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 znebaG logloglog 11 +−= , (7) 

where z is the depth of the layer considered. Rewriting the above law we arrive at: 

 nbeaG 01010 σ ′= . (8) 

Along with formulae (6) and (7) we will examine the following additional form of 
the equation for shear modulus, excluding its explicit dependence on e: 

 012 logloglog σ ′+= naG , (9) 

 znaG logloglog 13 += . (10) 

Also the following possible sub-correlations will be taken into account: 

 eddG 21loglog −= , (11) 

 00 logσ ′−= ccce , (12) 

 zcce log21 −= . (13) 

In other words: the purpose of the paper is to verify the “geometrical” nature of re-
lations (6) and (7). Do they represent plane surfaces or a line in the space occupied by 
the axes Glog , e, 0logσ ′ ? If relations (9)–(12) are valid, it will be possible to explain 
the differences in the powers of 0σ ′  discussed earlier. 

2. RESULTS OF LINEAR AND MULTI LINEAR REGRESSION ANALYSIS 
FOR DIFFERENT SAMPLES OF SOILS 

Statistic analysis has been carried out for four kinds of soils: three Monterey sands 
and Warsaw Pliocene clay [6]. The first group of results consists of laboratory tests 
published in [8]; the second one is obtained by in situ CPT dynamic probe [6]. These 
results are shown in tables 1, 2, 3 and 4. K denotes the bulk modulus. 

T a b l e  1 

Experimental data for coarse Monterey sand 

No. K  [kPa] G  [kPa] e 0σ ′   [kPa] 
1 279600 48600 0.661 10.8 
2 344200 65600 0.656 20.6 
3 413500 85000 0.653 40.2 
4 514100 115000 0.647 79.4 
5 602300 172000 0.642 157.8 
6 875000 237000 0.639 314.6 
7 1084000 320000 0.637 628.2 
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T a b l e  2 

Experimental data for medium Monterey sand 

No. K  [kPa] G  [kPa] e 0σ ′   [kPa] 
1 149700 33100 0.799 10.8 
2 162090 42000 0.799 20.6 
3 181300 57100 0.795 40.2 
4 224100 77300 0.792 79.4 
5 280300 108000 0.789 157.8 
6 389600 152000 0.786 314.6 
7 529600 214000 0.783 628.2 

T a b l e  3 

Experimental data for fine Monterey sand 

No. K  [kPa] G  [kPa] e 0σ ′   [kPa] 

1 101800 31200 0.811 10.8 
2 120800 37000 0.811 20.6 
3 150600 49000 0.808 40.2 
4 187800 69100 0.805 79.4 
5 255000 91100 0.802 157.8 
6 348500 123000 0.795 314.6 
7 492700 174000 0.786 628.2 

T a b l e  4 

Experimental data for Warsaw Pliocene clay 

G  [104 kPa] z  [m] e 
5.24 5.0 0.9 
5.50 5.0 0.9 
5.70 6.0 0.9 
5.50 6.0 0.9 
5.99 7.0 0.69 
6.49 7.0 0.69 
6.13 8.0 0.69 
6.64 8.0 0.69 
7.82 9.0 0.56 
8.15 9.0 0.56 
9.89 10.0 0.56 

It is known that there exist some partial correlations between independent variables 
of the problem as well as between dependent variables. To discover them expressions 
(6) and (7) and (9)–(13) have been statistically processed based on the data collected 
in tables 1–4. 
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The analysis that has been carried out consists of the following operations: first, 
we have taken logarithms of booths: mean effective stresses and moduli from tables 
1–3. In the case of Warsaw Pliocene clay (table 4), we have used the logarithm of 
depths z instead of the logarithm of stress. Next we have applied the classical mul-
tiregression and regression procedures to find the coefficients in the above-
mentioned formulas. As a result of this analysis, formulae (6), (7) and (9)–(13) can 
be substituted for the following expressions, in which unknown coefficients are 
identified.  

For the coarse Monterey sand (table 1) we have obtained the following relations: 

 )/(lg314.02491.1934.5lg 0 leK σ+−= , (14) 

 )/(lg457.09401.08258.4lg 0 leG σ+−= . (15) 

These abridged forms are naturally associated with the expressions written in 
physical scale: 

 314.0
0

5 )/()876.2(exp1059.8 leK σ−⋅= , (16) 

 457.0
0

4 )/()165.2(exp1069.6 leG σ−⋅= . (17) 

Equation (18) expresses the Casagrande law of compressibility and appears here as 
an auxiliary relation: 

 )/(lg0416.06749.0 0 le σ−= . (18) 

We noticed that insertion of the compressibility law (18) into relations (14) and 
(15) results in the following shortened formulae for the moduli G and K: 

 332.0
0

5 )/(1023.1 lK σ⋅= , (19) 

 470.0
0

4 )/(1055.1 lG σ⋅= . (20) 

We underline that expressions (19) and (20) are true in the case, where variation of 
the void ratio is caused only by effective mean stress.  

For the medium Monterey sand (table 2) we have obtained the following relations: 

 )/(lg295.0293.2647.6lg 0 leK σ+−= , (21) 

 )/(lg445.0130.2720.5lg 0 leG σ+−= . (22) 

The physical forms corresponding to the above equations are the following: 

 295.0
0

6 )/()28.5(exp1044.4 leK σ−⋅= , (23) 

 457.0
0

5 )/()905.4(exp1025.5 leG σ−⋅= . (24) 
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Equation (25) expresses the Casagrande law of compressibility for the medium 
Monterey sand: 

 )/(lg0097.0810.0 0 le σ−= . (25) 

Insertion of the compressibility law (25) into relations (23) and (24) results in the 
following shortened formulae for the moduli G and K: 

 315.0
0

4 )/(1020.6 lK σ⋅= , (26) 

 464.0
0

4 )/(1005.1 lG σ⋅= . (27) 

We underline that expressions (26) and (27) are true in the case, where variation of 
the void ratio is caused only by effective mean stress.  

For the fine Monterey sand (table 3) the following relations take place: 

 )/(lg277.02.917.12lg 0 leK σ+−= , (28) 

 )/(lg379.030.4569.7lg 0 leG σ+−= . (29) 

Writing (28) and (29) in a physical scale we obtain: 

 277.0
0

11 )/()18.21exp(1047.1 leK σ−⋅= , (30) 

 379.0
0

7 )/()901.9exp(1071.3 leG σ−⋅= . (31) 

As before, an auxiliary relation between the void ratio and the hydrostatic pressure 
can be written down: 
 )/(lg0137.08287.0 0 le σ−= . (32) 

The following shortened formulae for the moduli G and K result from insertion of 
(32) into (30) and (31): 

 389.0
0

4 )/(1072.3 lK σ⋅= , (33) 

 431.0
0

4 )/(1005.1 lG σ⋅= . (34) 

Expressions (33) and (34) are valid in the case, where variation of the void ratio is 
due to effective mean stress only.  

Similar results, concerning in this case (for the obvious reason) only the shear dy-
namic modulus, are obtained for the Warsaw Pliocene clay (table 4): 

 )/(lg2079.05637.4lg lzeG +−= . (35) 

Corresponding expression for shear dynamic modulus: 

 473.04 )/()4787.0(exp1066.3 lzeG −⋅= . (36) 
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Fig. 1. Projection of the curve defining the dynamic shear modulus G for the coarse Monterey sand 
on the planes of the system of coordinates: a) on the plane: void ratio – mean effective stress, 

b) on the plane: mean effective stress – G, c) on the plane: void ratio – G 
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The following auxiliary relation represents an equivalent form of the Casagrande 
law of compressibility: 
 )/(lg3281.1861.1 lze −= . (37) 

A shortened formula (38) for G is valid in the case, where variation of the void ra-
tio is caused only by effective mean stress: 

 753.041049.1 zG ⋅= . (38) 

During statistical analysis we have controlled the coefficient of determination r2 
and the level of significance F (ratio of variances). The coefficient of determination r2 
varied in the range of 83.0%–99.8%. The parameter F reflects practically deterministic 
character of the relations identified. 

 

Fig. 2. Projection of the curve defining the dynamic bulk modulus K for the coarse Monterey sand 
on the planes of the system of coordinates: a) on the plane: mean effective stress – K, 

b) on the plane: void ratio – K 

For a graphical illustration we have chosen the results obtained for the coarse 
Monterey sand and the Warsaw Pliocene clay. In figure 1 and figure 3, the projections 
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of relation (4) on the planes of the coordinate system are plotted for the coefficients 
identified by the regression and multiregression analyses. Theoretical graphs are com-
pared with experimental observation taken from tables 1 and 4. The same concerns the 
bulk dynamic modulus in figure 2. 

 

Fig. 3. Projection of the curve defining the dynamic shear modulus G for the Warsaw Pliocene clay 
on the planes of the system of coordinates: a) on the plane: void ratio – depth of the layer, 

b) on the plane: void ratio – G, c) on the plane: depth of the layer – G 
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3. CONCLUSIONS 

It can be concluded that relation ),( 0σ ′= efG  has a geometrical meaning of a curve 
and has not a surface in the space occupied by the coordinate system (G, e, 0σ ′ ). 

In the case where a loading path is characterized by a variation of the mean stress 
only, the Casagrande law of compressibility allows us to eliminate e from the formulae. 
Thus the mean stress plays a double role in determining the value of the dynamic 
moduli. In a general case of loading, a full form of the expression should be accounted 
for. The exponent n exhibits a character of a true physical constant. This exponent for the 
bulk modulus K corresponds closely to the Hertz theory, and for shear moduli it is prac-
tically equal to 0.5, as it has been stated before by many authors. In the light of our stud-
ies, the parameter b is strongly dependent on granulometric curve of soil. This means 
that the opinion and observation of STOLL published in [7] are not justified. 

The multi-linear regression analysis shows undoubtedly (high correlations and 
very good values of other statistics) that the following conclusions can be formulated: 

• A general relationship (4) proposed first by Stoll has a character of a physical law. 
• The simplified relations (without void ratio) are valid for particular paths of load-

ing (increasing mean stress only). 
• The exponent n in a general model is relatively non-sensitive to a kind of soil. 
• The parameter b related to the void ratio is strongly dependent on a kind of soil. 
• Both parameters n and b are different for the bulk and shear moduli. 
• The Casagrande law reveals the difference between the general and simplified 

models.  
• The Hertz law is not verified if its simplified form is used, especially for cohe-

sive soils (the exponent n in these particular laws does not obey the Hertz law). 
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