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Abstract: Recently, the filtration law of an incompressible viscous Newtonian fluid flowing through 
a rigid non-inertial porous medium (e.g. a soil sample placed in a centrifuge basket) which takes into 
account the Criolis effects was developed by using an upscaling technique [2], [3], [7]. The structure 
of the law obtained is similar to that of the Darcy’s law but the permeability tensor depends on the 
angular velocity ω of the porous matrix, i.e. on the Ekman number Ek. It satisfies the Hall–Onsager’s 
relation and is a non-symmetric tensor. The present study aims at quantifying more precisely the 
Coriolis effects in a porous medium. For this purpose we performed some 3D numerical simulations 
for the flow through rotating periodic array of spheres. Our numerical results clearly show the influ-
ence of the Coriolis effects on the permeability at large Ekman number ε << Ek –1 << 1 and Ekman 
number O(l ). These results are analyzed according to the geometrical properties of the packings of 
spheres: soild volume fraction, arrangement and size. Under particular conditions, we finally show 
that in the first approximation the flow through rotating granular media can be described by a modi-
fied Darcy’s law including a “macroscopic Coriolis force” which brakes and deviates the flow. 

1. INTRODUCTION 

In the absence of external forces, the steady-state slow flow of an incompressible 
liquid through a rigid inertial porous matrix is described by the well-known Darcy’s 
law, in which the tensor of intrinsic permeability K [m2] is positive and symmetri-
cal. In many practical applications in engineering and geophysics [8], [9], [11], [12], 
[13], the rigid porous matrix rotates with an angular velocity ω with respect to a 
Galilean frame. The main issue is to determine the consequences of the angular ve-
locity in Darcy’s law. Recently, [2], [3], [7], the filtration law in a rotating porous 
medium was rigorously derived by upscaling the physics at the pore scale. A deter-
ministic upscaling technique was used, namely the homogenisation method of mul-
tiple scale expansion for periodic structures [1], [4], [10]. Due to this the steady-
state slow flow of an incompressible liquid through a rigid porous matrix within a 
non-Galilean framework is described by Darcy’s law, but the permeability tensor 
Krot presents the following remarkable properties: it depends upon the angular ve-
locity of the porous medium through the Ekman number Ek = µ(2ρωl2) which 
measures the ratio of the viscous term to the Coriolis term in the Navier–Stokes 
equations, where l is a characteristic length of the porous medium and ρ is the fluid 
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density; it verifies the Hall–Onsager’s relationship )()( rotrot ωω −= jiij KK  and is a non-
symmetric tensor. 

Fluid flow through granular porous media is considered to be important in many 
engineering applications and natural processes. Thus, in the literature, there exist ex-
tensive theoretical and numerical studies concerning the Stokes flow in periodic arrays 
of spheres. These studies on particular geometry also represent an effective step in 
understanding the flow through more complex porous media. From these works, it is 
now well known that the permeability K of a porous medium of spheres depends on 
the size, concentration and arrangement of spheres. In the case of size, the logical di-
mension is the radius a of the spheres. In order to characterize the concentration, we 
can choose the solid volume fraction c or the porosity φ = 1 – c. Thus, the permeability 
K of a granular porous medium is the function of a, c or φ, and the arrangement of 
spheres. The aim of this paper is to estimate the permeability of rotating periodic ar-
rays of spheres which now depends on the Ekman number: Krot (a, c, arrangement, 
Ek). A brief review of the derivation of Darcy’s law in a rotating porous matrix by 
upscaling the pore-scale description is given in Section 2. Then we present the results 
of numerical simulations carried out for the flow through a rotating porous medium. 
The porous medium under consideration is composed of simple cubic (SC) and body-
centered cubic (BCC) packings of spheres. The influence of the Coriolis effect on the 
permeability at large Ekman number ε << Ek–1 << 1 and Ekman number O(l) is suc-
cessively presented and analyzed according to the geometrical properties of the porous 
medium. Comparison is made with Ek–1 = 0. 

2. FILTRATION LAW IN ROTATING POROUS MEDIA 

The objective of the present section is to give a brief review of the derivation by 
homogenisation of the filtration law in a rotationg porous medium. For details the 
reader is referred to [2], [3], [7]. 

2.1. UPSCALING PROCESS 

Physical phenomena in heterogeneous systems such as porous media are ho-
mogenisable, i.e. they may be modelled by means of an equivalent continuous macro-
scopic description, provided that the condition of separation of scales is satisfied [1], 
[4], [10]. This fundamental condition may be expressed as ε = l/L << 1, in which l and 
L are the characteristic lengths of the heterogeneities (here, the pore characteristic 
size) and of the macroscopic sample or excitation, respectively. The macroscopic 
equivalent model is obtained based on the description made at the heterogeneity scale 
according to the method presented in [1]: i) assuming that the medium is periodic, 
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without loss of generality; ii) writting the local description in a dimensionless form; 
iii) estimating the order of magnitude of the dimensionless numbers with respect to the 
scale ratio ε ; iv) looking for the unknown fields in the form of asymptotic expansions 
in powers of ε ; v) solving the boundary-value problems that arise at the successive 
orders of ε after introducing the asymptotic expansion in the local dimensionless de-
scription. The macroscopic equivalent model is obtained from the compatibility condi-
tions, which are the necessary and sufficient conditions for the existence of the solu-
tions of the boundary-value problems. 

2.2. DIMENSIONLESS PHYSICS AT THE PORE SCALE 

Consider the flow through a porous medium of the period Ω bounded by ∂Ω that is 
placed in a centrifuge of the radius r. Within the periodic cell, the fluid occupies the 
domain Ωp, and the fluid–solid interface is denoted by Γ (figure 1). We also assume 
the porous matrix to be rigid. In the case of the moving porous matrix frame R1, the 
dimensinless description of the quasi-static flow of an incompressible viscous Newto-
nian liquid is written as 

 µ∆w – Q∇p = ρ(Rγ (O) + Ek–1ω × w + RAω ×(ω ×OM))    in Ωp, (1) 

 ∇ w = 0   in  Ωp,    w = 0   on  Γ, (2) 

where the vector w is the fluid velocity relative to that of the solid matrix of the po-
rous medium, p denotes the pressure and µ represents the fluid viscosity. Acceleration 
due to gravity is included in the pressure term. In the above equations, ω denotes the 
angular velocity of the porous matrix (i.e. of the centrifuge), O is a fixed point of the 
porous matrix within the period and M represents a current point in Ωp. We use the 
local pore length-scale l a the characteristic length scale for normalising the variations 
of the differential operators: in other words, we apply the so-called microscopic point 
of view [1]. Let consider a centrifuge of the radius r whose angular velocity is 
ω = ω eω, ω being constant. Based on the pore-scale description it is possible to derive 
four dimensionless numbers Q, which repersent the ratio of the pressure term to the 
viscous forces µ∆w. According to the physical reasoning presented in [1] we have 
Q = O(ε–1), the ratio R of the macroscopic convective inertia ργ (O) to the viscous 
force µ∆w; the ratio A of the local convective inertia ρω ×(ω ×OM) to the macro-
scopic convective inertia ργ (O) and the Ekman number Ek; the ratio of the viscous 
force µ∆w to the Coriolis inertia 2ρω × w. We have A = O(l/r) = O(ε 2) and we as-
sume R = O(l). It should be noticed that the requirement R ≤ O(l) is linked with the 
hypothesis of separation of scales regarding to excitation. Greater orders of magnitude 
of R would yield non-homogenisable problems, i.e., problems for which any equiva-
lent macroscopic description does not exist. As it was mentioned in the introduction, 
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to account for the Coriolis effects, we assume that Ek = O(l). 

 

Fig. 1. Scheme of the periodic cell Ω in a non-Galilean frame R1 

2.3. MACROSCOPIC DESCRIPTION 

2.3.1. EKMAN NUMBER Ek = O(l ) (ε  << Ek –1 << ε –1) 

By applying the technique of multiple-scale expansions, it can be shown [2], [3], 
[7] that the macroscopic filtration law of rotating porous media takes the form 
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which represents the macroscopic equivalent behaviour at the order of O(ε) of ap-
proximation. It can be shown that 
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where the velocity field w(0) is obtained by solving the following dimensional bound-
ary value problem over the periodic cell Ω : 

 µ∆w(0) – (∇p + ργ (O)) – ∇p(1) = 2ρ ω × w(0)    in Ωp, (5) 

 ∇ w(0) = 0   in  Ωp,   w(0) = 0  on  Γ. (6) 

The unknows w(0) and p(1) are also Ω-periodic. The macroscopic force term (∇p + 
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R1 (moving frame)/R0
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ργ (O)) and the angular velocity ω are supposed to be given. From equation (4) we see 
that the filtration tensor Krot depends on the angular velocity ω, the kinematics viscos-
ity µ /ρ and the characteristic length l through the Ekman number. Although this for-
mula is similar to Darcy’s law, they differ considerably. In effect, it can be seen [2], 
[3] that the effective permeability Krot is a positive but non-symemtric tensor and that 
it verifies Hall–Onsager’s relationship )()( rotrot ωω −= jiij KK  which expresses the ana-
logue of Hall’s effect for filtration [5]. 

2.3.2. LARGE EKMAN NUMBER (ε  << Ek –1 << 1) 

In this particular case, and these which correspond to many engineering applica-
tions where ω is small, it can be shown that the filtration law in dimensional form and 
at the second order of approximation can be given in the following form: 

 ))(()2(
2 Op γρ

µ
ρµ

+∇
×⋅−⋅

−=
ωHKv , (7) 

where ))/2(( ×⋅−⋅ ωHK µρ  stands for an approximation of Krot at large Ekman num-
ber. Tensor K [m2] is a classical Galilean permeability tensor and H [m4] is the sec-
ond-order tensor. They are defined as 
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where εijk denotes the permutation symbol and kij = rot
ijk  (Ek–1 = 0) is the solution of 

the boundary value problem (5)–(6) in the particular case, where ω = 0. 

3. PERMEABILITY OF ROTATING PERIODIC ARRAYS OF SPHERES 

A porous medium under consideration is composed of simple cubic (SC) and 
body-centered cubic (BCC) packings of spheres (figure 2). The radius of spheres is 
denoted by a, while e is the size of the periodic cell. The porosity of the porous me-
dium varies from 0.476 to 1 for the SC packing and from 0.32 to 1 for the BCC pack-
ing. After a brief description of the numerical method used, numerical results of the 
permeability of the rotating periodic arrays of spheres for a large Ekman number ε  << 
Ek –1 << 1 and the Ekman number O(l) are successively presented and compared with 
the case where Ek –1 = 0. 
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Fig. 2. Simple cubic (SC) (a) and body-centered cubic (BCC) (b) packings of spheres 

3.1. COMPUTATIONAL PROCEDURE 

The numerical results presented below have been obtained by solving the dimen-
sional boundary-value problem (5)–(6) over the periodic cell Ω. This boundary value 
problem is solved with a mixed pressure–velocity formulation implemented in the 
finite-element software FEMLAB [6]. P2–P1 finite elements are used: a quadratic P2 
and a linear P1 polynomial approximations are adjusted to the velocity field w(0) and 
the pressure field p(1), respectively. Then, the components of permeability tensor Krot 
(or K) of the porous medium are determined by calculating the magnitude of the cell-
averaged velocity of the fluid <w(0)> (4). 

3.2. NUMERICAL RESULTS 

3.2.1. Ek –1 = 0 

When Ek –1 = 0, i.e. ω = 0, the permeability tensor of both microstructures is iso-
tropic and can be put in the form 

 Krot = K = K I = a2K *I, (9) 

where I stands for the identify tensor, and K * is the dimensionless permeability which 
depends on the solid volume fraction c and the arrangement of spheres: K * = K * (c, 
arrangement). Figure 3 shows the evolution of the dimensionless permeability K * with 
the solid volume fraction c for both arrays of spheres. The dimensionless permeability 
proposed by Kozeny–Carman is plotted in figure 3. This relation is in agreement with 
our numerical results for solid volume fraction larger than 0.4. The following function 
(see the fitted curve in figure 3) 
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appears to be a good approximation of the dimensionless permeability for both ar-
rangements of spheres in the whole investigated range of the volume solid fraction 
(0 < c < 0.68). 

 

Fig. 3. Simple cubic (SC) and body-centered cubic (BCC) packings of spheres. 
Evolution of the dimensionless permeability K * = K/a2 versus the solid volume fraction c 

3.2.2. ε << Ek –1 << 1 

We now consider ε << Ek –1 << 1, i.e. small ω. In this particular case, the perme-
ability tensor of both arrangements of spheres is given by: 

 Krot = )/2( ×⋅−⋅ ωHK µρµ , (11) 
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where K [m2] is the permeability tensor at ω = 0, and H [m4] is the second-order ten-
sor defined by relation (8). In the current case, tensors K and H are isotropic: K = KI 
= a2 K *I and H = HI = a4H *I, where H * is a dimensionless coefficient which depends 
on the solid volume fraction c and the arrangement of spheres, i.e. on the microstruc-
ture: H * = H *(c, arrangement). Figure 4 shows the evolution of H * with the solid vol-
ume fraction c for both arrays of spheres. Neglecting the effect of the arrangement of 
spheres on H *, our numerical results have been adjusted by the following relation (see 
the fitted curve in figure 4): 

 H *(c) = (1 + 1.5c + 5c14/3) (K *)2 = β (c) (K *)2. (12) 

 

Fig. 4. Simple cubic (SC) and body-centered cubic (BCC) packings of spheres. 
Evolution of the dimensionless coefficient H * = H/a4 versus the solid volume fraction c 
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Thus, the permeability tensor Krot for ε << Ek–1 <<1 can be given by: 
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where ω = (ω1, ω2, ω3) and l used to calculate Ek–1 is equal to .)( *2Kacβ  

3.2.3. Ek –1 = O(l) 

Now, we consider the case where Ek–1 = O(l). For the sake of simplicity we assume 
that ω = ω3e3. As a result of the geometry and angular velocity, the permeability ten-
sor Krot(ω3) of arrays of spheres takes the form: 
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where K33 = K and .)0( 3
rot
11 KK ==ω  The plots of the dimensionless permeabilities 

for the simple cubic (SC) arrangement of spheres, KKKK /)(and/)( 3
rot
213

rot
11 ωω  with 

respect to ω3 for three different values of solid fraction c(0.1, 0.3, 0.5) and for two 
values of e(2 mm and 1.5 mm) are shown in figure 5a. At a given angular velocity 
we observe that the influence of the Coriolis effects on the permeability decreases 
with an increase in the solid volume fraction c and with a decrease in the length e. 
We stress that the above results are valid only if ω = ω3e3. Figure 5b shows the evo-
lution of all these numerical results with respect to Ek–1 (13). We obtained different 
curves )0(/)( 3

rot
113

rot
11 =ωω KK  and )0(/)( 3
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113

rot
21 =ωω KK  which in this case depend 

on the Ekman number and also on the solid volume fraction c. The following rela-
tions 
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have been plotted in figure 5b (continuous line). These simple relations are in agree-
ment with our numerical data if Ek–1 < 0.5. For higher values of Ek–1, the difference 
between the above relations and our numerical data are less than 10%. From relations 
(15)–(16) and the definition of the dimensionless number Ek–1 (13), it can be shown 
that in the first approximation, the flow can be given in the followign form: 

 )2)()(())(()(
33

1rot

veKKv ×++∇−=+∇−=
−

ρωβγρ
µ

γρ
µ

cOpOpEk , (17) 

where the term β(c)2ρω3e3×v appears as a “macroscopic Coriolis force” which brakes 
and deviates the flow. The above results remain valid for the porous medium com-
posed of body-centered cubic (BCC) packing of spheres. 

 

Fig. 5. Simple cubic (SC) packings of spheres. 
Dimensionless permeabilities KK /)( 3

rot
11 ω  and KK /)( 3

rot
21 ω  versus  angular velocity ω3 (a) and 

versus Ek –1 (b) defined by equation (13) for three different values of the solid volume fraction c 
(0.1, 0.3, 0.5) and for two values of e (2 mm and 1.5 mm): 

(○) c = 0.1, e = 2 mm, (□) c = 0.3, e = 2 mm, (∆) c = 0.5, e = 2 mm, (<) c = 0.1, e = 1.5 mm, 
(◊) c = 0.3, e = 1.5 mm, (⌧) c = 0.5, e = 1.5 mm. The continuous line represents equations (15)–(16) 
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4. CONCLUSION 

The filtration law of an incompressible viscous Newtonian fluid flowing through 
a rigid non-inertial porous medium, which takes into account the Coriolis effects, was 
developed by using an upscaling technique. The structure of the law obtained is simi-
lar to that of Darcy’s law but the permeability tensor depends on the angular velocity 
ω of the porous matrix, i.e. on the Ekman number Ek; it satisfies the Hall–Onsager’s 
relation and is a non-symmetric tensor. Numerical simulations of the flow through 
a rotating porous medium were presented. The porous medium under consideration 
was composed of simple cubic (SC) and body-centered cubic (BCC) packings of 
spheres. Our numerical results showed the influence of the Coriolis effects on the 
permeability. When the Ekman number is large, i.e. Ek–1 << 1, which is the case in 
many practical applications, the influence of the Coriolis effect on the permeability 
can be described by a simpel relation which is valid for both microstructures (i.e. it 
does not depend on the arrangement of spheres) and for any orientation of the angular 
velocity vector. When Ek–1 = O(l), the influence of the Coriolis effect on the perme-
ability has been studied in a particular case where the angular velocity vector is per-
pendicular to one face of the simple cubic (SC) or body-center cubic (BCC) packings 
of spheres. Our results showed that the permeability strongly depends on ω and the 
geometrical properties of the porous medium: solid volume fraction, sphere arrange-
ment and the size of the periodic cell. Finally, we showed that in the first approxima-
tion, the flow through rotating granular media can be described by modified Darcy’s 
law including a “mascroscopic Coriolis force” which brakes and deviates the flow.  
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