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Abstract: The paper deals with modelling of unsaturated water flow in soils which are composed of two 
distinct sub-domains of very different hydraulic properties (double-porosity soils). Flow in such media is 
often characterized by the local non-equilibrium of the capillary pressure in the two regions, which can-
not be described by the local equilibrium model [4]. Recently, a non-equilibrium model based on the 
homogenization approach has been proposed [5]. In the present paper, the model is applied to simulate 
gravitational drainage in a particular case of double-porosity medium. The medium consists of highly 
conductive sand matrix with weakly conductive spherical inclusions arranged in a periodic manner. The 
numerical simulations have been performed with the DPOR-1D code [11]. Calculation of the effective 
parameters of the medium is presented as well as the solution of the macroscopic boundary value prob-
lem. The behaviour of the double-porosity medium is compared with the behaviour of single-porosity 
media, i.e. a homogeneous sand and a sand with impermeable inclusions. The results show the impor-
tance of the non-equilibrium effects for the flow in double-porosity soils. 

NOTATION 

Physical units: L – length, M – mass, T – time. 
Indices 1 and 2 refer to the matrix and inclusions, respectively. 

LATIN LETTERS 

C – specific water capacity [L–1]. 
C eff – effective water capacity [L–1]. 
h – macroscopic capillary pressure head [L]. 
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h2 – capillary pressure head in inclusions [L]. 
I – identity matrix. 
K1 – hydraulic conductivity tensor of the matrix [LT–1]. 
K eff – effective hydraulic conductivity tensor [LT –1]. 
KS – hydraulic conductivity at saturation [LT –1]. 
m – water retention function parameter (van Genuchten–Mualem model), m = 1 – 1/n [–]. 
N – unit vector normal to the interface Γ.  
n – water retention function parameter (van Genuchten–Mualem model) [–]. 
t – time [T]. 
w1, w2 – volumetric fractions of the matrix and the inclusions [–]. 
X – macroscopic space coordinate [L]. 
Y – local space coordinate [L]. 

GREEK LETTERS 

α – water retention function parameter (van Genuchten–Mualem model) [L–1]. 
Γ – interface between media 1 and 2. 
θR – residual volumetric water content (van Genuchten–Mualem model) [–]. 
θS – saturated volumetric water content (van Genuchten–Mualem model) [–]. 
χ – vector function, solution of the local boundary value problem [–]. 
Ω – period domain. 
Ω1, Ω2 – sub-domains of the period occupied by media 1 and 2. 

1. INTRODUCTION 

Double-porosity soils are highly heterogeneous media, characterized by the pres-
ence of two distinct porous sub-domains with contrasting hydraulic parameters. For 
example, in aggregated soils one sub-domain can be associated with weakly conduc-
tive soil aggregates, while the other sub-domain corresponds to the inter-aggregate 
space filled with coarser, highly conductive material. The time required to equilibrate 
the capillary pressure is very different in each region. Due to this particular structure 
local non-equilibrium conditions often arise during the water flow. The non-
equilibrium effects cannot be described using the single-porosity model presented in 
[4]. A number of different empirical approaches to model non-equilibrium flow in 
unsaturated soils have been developed, see [10] for an extensive review.  

Recently, a model of non-equilibrium flow has been proposed by LEWAN- 
DOWSKA et al. [5]. The authors used the homogenization technique [1], [3], [9] to 
derive the macroscopic model in a mathematically rigorous manner. The model has 
been implemented in the DPOR-1D numerical code [11]. The aim of this paper is to 
provide an illustrative example of the application of this model. In contrast to the 
previous contribution [5], our attention is focussed on the qualitative and quantita-
tive comparison of the behaviour of double- and single-porosity media during gravi-
tational drainage. 
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2. THEORETICAL MODEL 

The macroscopic model [5] was derived for a periodic medium (the period domain be-
ing denoted by Ω), which is composed of a highly conductive interconnected matrix Ω1 
and a weakly conductive inclusions Ω2 with the interface Γ  between the two sub-
domains. It has the form of the following single integro-differential nonlinear equation 
[5]: 
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where h [L] is the macroscopic capillary pressure head (h ≤ 0), C eff (h) [L–1] is the effec-
tive water capacity, Keff (h) [LT–1] is the effective hydraulic conductivity tensor, h2 [L] 
and C2 (h2) [L–1] are the local capillary pressure head in the inclusions Ω2 and the corre-
sponding specific water capacity, respectively, X [L] is the spatial coordinate (X3 axis 
being oriented positively downward) and t [T] is time. The integral term in eq. (1): 
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represents the water exchange between the matrix sub-domain Ω1 and the inclusions 
Ω2. It can be calculated by solving the additional local flow equation representing the 
inside of the inclusion at each point of the macroscopic domain:  

 02
2

2
2 =











∂
∂

∂
∂

−
∂

∂

j
ij

i Y
hK

Yt
h

C ,    i, j = 1, 2, 3  in Ω2 (3) 

with the pressure continuity condition at the interface Γ: 

 hh =2     on Γ. (4) 

In eq. (3), Y [L] is the local spatial coordinate associated with a single period, and 
K2(h2) [LT–1] is the local hydraulic conductivity of the inclusions. 

If we assume that both sub-domains are locally homogeneous and isotropic, then 
the effective parameters are defined as follows [5]: 
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where K1 is the local hydraulic conductivity in the matrix sub-domain Ω1 and the vec-
tor function χ is obtained from the solution of the following local boundary value 
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problem in a single period: 
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where N is the unit vector normal to Γ. Moreover, χ should be Ω-periodic and its vol-
ume average over Ω should be zero. 

3. SOLUTION OF A DRAINAGE PROBLEM IN 
A DOUBLE-POROSITY MEDIUM 

3.1. GEOMETRY, MATERIAL PROPERTIES AND BOUNDARY CONDITIONS 

The numerical example concerns a drainage process in a 240-cm thick layer of 
a double-porosity medium. The medium is composed of highly conductive sand matrix 
with weakly conductive spherical inclusions (sintered clayey material). The spheres 
(0.64 cm in diameter) are arranged periodically as shown in figure 1a. The volume frac-
tion of the matrix and inclusions are w1 = 0.445 and w2 = 0.555, respectively. 
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Fig. 1. Period geometry used in numerical example. Dimensions are in [cm] (a). 
Initial and boundary conditions for the macroscopic problem (b) 

The hydraulic characteristics of the two porous materials are described by 
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Mualem–van Genuchten functions [7], [12] of the following form: 

 mn
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with m = 1 – 1/n. The values of the parameters for the sand matrix are: θR = 0.0, θS = 
0.342, α = 1.38×10–2 cm–1, n = 4.056, KS = 2.83×10–3 cm s–1 and for the inclusions: θR 
= 0.0, θS = 0.295, α = 6.05×10–3 cm–1, n = 2.269, KS = 1.15×10–9 cm s–1. The values 
are taken from [6], except for KS in inclusions, which has been reduced by 4 orders of 
magnitude. The retention and conductivity curves of the two materials are shown in 
figure 2. 
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Fig. 2. Hydraulic properties of matrix, inclusions and double-porosity medium: 
a) specific water capacity, b) hydraulic conductivity 

At macroscopic scale the flow is considered as one-dimensional. The initial and 
boundary conditions represent gravitational drainage of initially saturated layer: 

• h (X3) = 0 for t = 0 (full saturation), 
• q (t) = 0 for X3 = 0 (impermeable boundary at the surface), 
• h (t) = 0 for X3 = 240 cm (constant water level at the bottom of the layer, i.e. 

a depression of –240 cm with respect to the upper level). 

3.2. CALCULATION OF THE EFFECTIVE PARAMETERS 

According to eq. (5) the effective water capacity is given by the following formula: 
C eff (h) = 0.445 C1 (h). In order to determine the effective conductivity, one has to 
solve the following local boundary value problem for χ3:  
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Fig. 3. Solution of the local boundary value problem – distribution of the χ 3 function. 
The horizontal axis Y* corresponds to the diagonal of the base of the parallelepiped (Y1 = Y2) 

The solution was obtained using the DPOR-1D code. In figure 3, the distribution 
of the corresponding χ3 function is presented in a diagonal cross-section plane of the 
period. After application of the definition of :eff

33K  
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the following relation between the effective conductivity and matrix conductivity was 
obtained: eff

33K (h) = 0.308 K1 (h). The effective parameters of the double-porosity 
medium are presented in figure 2. 
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3.4. SOLUTION OF THE MACROSCOPIC EQUATION 

One-dimensional form of the macroscopic equation is the following: 
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Equation (14) was solved using DPOR-1D code. The algorithm is based on an im-
plicit finite difference approximation of eq. (1). The solution was obtained with the fol-
lowing numerical parameters: ∆X = 0.5 cm (481 nodes), ∆Y = 0.032 cm , ∆ t = 10–6 s to 
104 s, accuracy ∆h = 0.1 cm. 

4. RESULTS AND DISCUSSION 

In order to show the difference in the behaviour of double- and single-porosity 
media, additional numerical simulations were carried out for a homogeneous medium 
(sand only) and a medium composed of sand matrix with impermeable inclusions. 
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Fig. 4. Profiles of water pressure head in the double-porosity medium and in the homogeneous sand. 
For the double-porosity medium the values for the two sub-domains (sand matrix and inclusions) 

are shown separately 
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The results of the simulations are presented in figures 4–6. In figure 4, the profiles 
of pressure head along the column are shown for selected time levels. The results ob-
tained for homogeneous sand are compared to those obtained for double-porosity me-
dium. In the latter case, two separate profiles are shown: one for the macroscopic pres-
sure head h (sand matrix) and one for the water pressure head averaged within the 
inclusions h2.  

At the beginning the pressure head is close to zero (full saturation), and as the 
drainage continues the profiles approach the hydrostatic distribution with the value 0 
at the bottom and –240 cm at the top of the layer. The drainage is much faster in ho-
mogeneous sand, while in case of double-porosity medium a considerable amount of 
water is stored in the inclusions, which drain very slowly. In the double-porosity me-
dium, non-equilibrium of the pressure head between matrix and inclusions can be 
clearly seen. The difference between h and averaged h2 is relatively large at the begin-
ning of the drainage, and becomes smaller and smaller with time. After about 107 s the 
equilibrium is reached between the two sub-domains. However, even for that time, the 
hydrostatic distribution of pressure is not reached in the double-porosity medium. 
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Fig. 5. Evolution of the exchange term Q (eq. (2)) at different depths of the soil layer 

The intensity of water exchange between inclusions and sand matrix, represented 
by the non-equilibrium term, is shown in figure 5. Time evolution of this term is pre-
sented for different depths. The largest values occur at the beginning of the process in 
the upper part of the layer. As can be seen from figure 4, they correspond to the largest 
differences in the pressure head between the two sub-domains. 
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Fig. 6. Normalized cumulative drainage flux for the double-porosity medium, the homogenous sand and 
the sand with impermeable inclusions. The normalized cumulative drainage flux represents the quantity 

of drained water as a fraction of the total amount of water accessible for drainage in each medium 

Figure 6 presents a comparison of macroscopic behaviour of the double-porosity me-
dium with the homogeneous sand and the sand with impermeable inclusions. The nor-
malized cumulative flux at the bottom of the layer is shown as a function of time. It 
represents the quantity of water obtained from drainage as a fraction of the total accessi-
ble amount of water for each medium. The three media behave differently. The drainage 
is the fastest in the homogeneous sand. In the medium with impermeable inclusions, the 
flow is slowed down in the initial phase. Both single-porosity media become completely 
drained after about 106 s. In contrast, the process is not completed in double-porosity 
medium even after 107 s due to the influence of weakly conductive inclusions. 

5. CONCLUDING REMARKS 

According to the results of the homogenization procedure the flow in double-
porosity medium composed of a highly conductive matrix and weakly conductive 
inclusions can be described by a single macroscopic equation with two effective pa-
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rameters. The local non-equilibrium of pressure caused by the presence of inclusions 
is taken into account by an integral term in the macroscopic equation. The numerical 
experiments performed here show the importance of the local non-equilibrium effects 
for the drainage flow. Generally, the flow is retarded in the double-porosity medium 
with respect to the single-porosity one due to the exchange of water between the ma-
trix and the inclusions. Although those effects seem to be quantitatively smaller for the 
drainage case with respect to the infiltration case shown in [5], the macroscopic be-
haviour of the medium cannot be correctly represented by a single-porosity model. 
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