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Abstract: This paper presents a coupled model for anisotropic damage and permeability evolution by us-
ing a micro-macro approach. The damage state is represented by a space distribution of microcrack den-
sity. The evolution of damage is directly linked to the propagation condition of microcracks. The macro-
scopic free enthalpy function of cracked material is obtained by using micromechanical considerations. It 
is assumed that the microcracks exhibit normal aperture which is associated with the crack growth due to 
the asperity of crack faces. By using Darcy’s law for macroscopic fluid flow and assuming laminar flow in 
microcracks, the overall permeability of the representative volume element is obtained by an averaging 
procedure taking into account the contribution of crack aperture in each orientation. 

Streszczenie: Przedstawiono sprzężony model anizotropowego uszkodzenia i zmiany przepuszczal-
ności, stosując podejście mikro-makro. Stan uszkodzenia jest odwzorowany przez rozkład prze-
strzenny gęstości mikropęknięcia. Ewolucja uszkodzenia wiąże się bezpośrednio z warunkiem roz-
przestrzeniania się gęstości mikrouszkodzeń. Makroskopową funkcję entalpii swobodnej spękanego 
materiału otrzymuje się na podstawie rozważań mikromechanicznych. Zakłada się, że mikrouszko-
dzenia mają zwykłą szczelinę, co jest związane z powiększaniem się pęknięcia wskutek chropowato-
ści powierzchni czołowej pęknięć. Używając prawa Darcy’ego do opisu makroskopowego przepły-
wu cieczy i zakładając, że jest on laminarny w mikrouszkodzeniach, otrzymano całkowitą 
przepuszczalność reprezentatywnego elementu trójwymiarowego za pomocą uśredniającej procedu-
ry, w której uwzględnia się udział szczeliny pęknięcia w każdym kierunku. 

Резюме: Применяя подход микро-макро, представили сопряженную модель анизотропного 
повреждения и изменения проницаемой способности. Состояние повреждения отражено путем 
пространственного распределения плотности микротрещин. Эволюция повреждения непосред- 
ственно связана с условием распространения плотности микроповреждений. Макроскопная 
функция свободной энтальпии трещиноватого материала получена на основе микромеханических 
рассуждений. Предполагается, что микроповреждения обадают обычной трещинойб что связано с 
увеличением трещины из-за шероховатости лобовой поверхности трещин. Используя закон Дарси 
для описания макроскопного протекания жидкости и предполагая, что оно ламинарно 
в месте микроповреждений, получили полную проницаемую способность представительного 
трехразмерного элемента с помощью усредняющей процедуры, в которой учитывается участие 
щели трещины в каждом направлении. 

                                                      
* Corresponding author. 
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1. INTRODUCTION 

In brittle geomaterials like rocks and concrete, damage by nucleation and growth 
of microcracks is an essential mechanism of deformation and failure. The induced 
damage not only affects the mechanical properties of materials, but also the flow and 
conductivity properties. The variation of permeability with the growth of microcracks 
is one of the most significant phenomena to be taken into account in many engineering 
applications, for example, the storage of nuclear wastes, the stability of rock slopes 
and hydraulic dams, and the long-term durability of concrete structures. 

A number of constitutive models have been proposed for the description of in-
duced damage in geomaterials (we do not give an exhaustive list of these models 
here). They can be roughly separated into two classes: phenomenological models and 
micromechanical models. 

Generally, the advantage of the micromechanical models lies in the possibility of 
accounting for physical mechanisms involved in material damage. However, the nu-
merical implementation of these models in view of engineering application is not easy 
and the associated computation procedure is usually time-consuming. On the other 
hand, the phenomenological models provide us with simple and unified mathematical 
formulations. These models can be easily implemented in a computer code and then 
used as a powerful tool for engineering analyses. However, some assumptions and 
concepts used in the phenomenological models, for instance, the effective stress con-
cept, are not clearly based on physical backgrounds. On the other hand, various ap-
proaches have been proposed for the estimation of permeability in fractured media, 
involving empirical and statistical investigations (ODA [9], LEE et al. [7], ZHANG et al. 
[19], SUZUKI et al. [15], CHEN et al. [3], DOOLIN and MAULDON [4], SCHULZE et al. 
[13], ODA et al. [10], BERKOWITZ [2], WANG and PARK [16]). However, these inves-
tigations are generally performed for a given distribution of fractures in rocks, and 
they are not coupled with the evolution of mechanical behaviours of materials. There 
are very few studies on the coupled modelling of mechanical damage and permeability 
evolution.  

In the first part of this paper, we propose to develop a new anisotropic damage 
model for brittle rocks essentially subjected to compressive stresses. The model pro-
posed will be based on the relevant micromechanics analyses in order to take into 
account main physical mechanisms involved in the microstructure scale. In the second 
part, the mechanical model is extended to the description of variation of permeability 
due to the growth of microcracks. The variation of permeability is then directly asso-
ciated with the mechanical damage of material. Throughout the paper, the following 
notations for tensorial calculations will be used: ( )ij i ja b a bÄ =

rr , ( . )i ij jA b A b=
r

, 

( : ) ij jiA B A B= , ( . ) i ia b a b=
rr . 
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2. FORMULATION OF THE DAMAGE MODEL 

In this paper, it is assumed that rocks are subjected to compression-dominated 
stresses. The crack density remains small and the interaction between microcracks can 
be neglected before the onset of coalescence of microcracks. The initial behaviour of 
materials is isotropic and the anisotropy is fully induced by preferential distribution of 
microcracks. 

2.1. FREE ENTHALPY AND CONSTITUTIVE EQUATIONS 

In brittle materials like rocks, damage by nucleation and growth of microcracks is 
the essential dissipation mechanism. Plastic deformation due to dislocation-like sliding 
can be neglected. Macroscopic irreversible strains are developed due to residual open-
ing and mismatch of microcracks during loading–unloading process. Let us consider 
now a representative volume element (RVE) of the cracked material. The letter Ω 
stands for the volume of RVE. The RVE is composed of an elastic solid matrix, which 
is weakened by a number of sets of microcracks appearing in different directions. The 
RVE is subjected to a uniform stress field σ on its boundary. For the simplicity of 
mathematical formulation, we first consider a single family of N similar microcracks 
inside the RVE, oriented in the direction defined by the unit normal vector nr . In the 
same family, all the cracks have the same geometrical form. The vector of displace-
ment jump on each microcrack is defined as follows: 

 b u u+ -= -
r r r , (1) 

where u +r  and u -r  are respectively the displacement vectors on the two opposite faces 
of the crack. The macroscopic strain tensor of the REV can be determined by: 

 0 1: ( )
2

N b n n b ds
G

W +

= + Ä + Äň
r rr r

ε σS , (2) 

where G+ denotes the crack face with the positive normal unit vector nr . 0S  is the 
initial elastic compliance tensor of undamaged material. In the case of penny-shaped 
cracks, the unit normal nr  is constant along the crack surface and the vector b

r
 is taken 

as the average displacement jump over the crack. The elastic free enthalpy can be ex-
pressed by: 

 0 21 : : ( ) ( )
2c

Nw .n .b r
Ω

= + π
rr

σ σ σS . (3) 

The variable r denotes the radius of microcracks. According to the fundamental 
work by KACHANOV [6], the displacement jump can be decomposed into a normal 
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component and a shear component. The two components can be related respectively to 
the normal stress and shear stress vectors applied to the crack: 

 [ ]( . . ) . ( . . )b n n n n n n nb g= + -
r r r r r r r r

σ σ σ . (4) 

The two coefficients involved in (4) are given by KACHANOV [6]: 

 
2
0

0

16(1 )
3

r
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nb
p

-= ,    
0

2
2

g b
n

=
-

. (5) 

E0 and ν0 are respectively the initial Young’s modulus and the Poisson ratio of un-
damaged material. According to (4), the normal displacement jump is proportional to 
the normal stress applied to the crack. As the normal displacement jump must be posi-
tive (opened cracks) or zero (closed cracks), the following closure conditions of crack 
have to be prescribed: 

 
opened cracks,

closed cracks.

( . . ) 0,

( . . ) 0,

n n

n n

ě >ďďíď Łďî

r r

r r
σ

σ
 (6) 

By introducing this closure condition and relation (4) into (3), the free enthalpy 
function becomes: 

( ){ }001 : : 1 . . [( . ) ( . . ) ] .( . )
2 2cw h n n n n n n n nnw += + - < > + -r r r r r r r r
σ σ σ σ σ σS . (7) 

The bracket x +  defines the positive cone of the normal stress. The variable ω 
denotes the crack density associated with the family of microcracks oriented in the 
direction nr , and h is the elastic compliance of crack, respectively defined by: 

 
3Nrw

W
= ,    

2
0

0 0

16(1 )
3 (2 )

h
E

n
n

-=
-

. (8) 

Let homS  denote the fourth-order effective elastic compliance tensor of cracked 
material. Then the free enthalpy function (7) can be rewritten as 

: :hom1
2cw = σ σS .  

The effective elastic compliance tensor is the expressed as follows: 

 { }hom 0 ( ) ( ) ( )h n n n n c n n n nw= + Ä Ä + Ä Ä + Ä Ä Är r r r r r r r
δ δS S , (9) 

0c n= -  for the opened crack and c = –2 for the closed crack. The free enthalpy func-
tion (7) and the effective elastic compliance tensor (9) are obtained for the brittle 
material containing one set of microcracks. This result should be extended to the ma- 
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terial containing cracks with arbitrary distributions. This can be done if we assume 
that there is not any interaction between microcracks. The overall free enthalpy of 
cracked material is obtained by the addition of the contributions from each set of mi-
crocracks. To do this, let us define a continuous crack density function, expressed by 

( )nw r , to represent an arbitrary distribution of microcracks in the space orientation. 
The macroscopic free enthalpy can be obtained by the integration of function (7) over 
all the space orientations on the surface of unit sphere denoted by S2. This surface is 
decomposed into two complementary but non-overlapped sub-domains, respectively 
the sub-domain S2+ corresponding to the orientations of opened cracks and the sub-
domain S2–corresponding to the orientations of closed cracks (PENSÉE et al. [12]). 
Thus, we have: 
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(10)
 

In general loading condition, the integral form (10) of the free enthalpy cannot be 
analytically evaluated. A numerical integration procedure has to be employed. In this 
paper, a Gauss-type method is chosen for the numerical integration on the surface of 
the unit sphere (BAZANT and OH [1]). Therefore, the surface of the unit sphere is dis-
cretized in a limited number of orientations P. The k th orientation is defined by the 
unit vector knr  and associated with the weight coefficient λ k. The free enthalpy func-
tion (10) is then approximated by: 
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where P1 denotes the number of orientations corresponding to opened cracks. Accord-
ing to this approximation, the effective elastic compliance tensor (9) can be extended 
to an arbitrary distribution of microcracks: 
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2.2. CRACK PROPAGATION AND DAMAGE EVOLUTION 

In the framework of thermodynamics, the damage evolution law is determined by 
the formulation of a dissipation potential in the space of the conjugated force associ-
ated with the damage tensor. However, the conjugated damage force is usually 
a complex function of the stresses applied and it is not easy to give a simple physical 
interpretation. This renders difficult the experimental identification of the damage law. 
In rock mechanics, as most laboratory tests are performed in stress-controlled or 
strain-controlled conditions, it appears simpler to formulate the damage evolution law 
directly in the stress or strain space. Therefore, in the present work, a direct approach 
is preferred in order to facilitate the experimental determination of the damage evolu-
tion law. The damage evolution is directly related to the crack propagation criterion 
which is based on the fracture mechanics. According to extensive experimental data 
from triaxial compression tests on brittle rocks (PATERSON [11], WONG [17]), the 
crack propagation is controlled by both the normal stress and shear stress applied to 
the crack. The crack growth is caused by increasing shear stress, while the compres-
sive normal pressure has a role of preventing the initiation and growth of microcracks. 
Different crack propagation criteria can be determined from laboratory data. Based on 
linear fracture mechanics, the real crack is replaced by a fictitious crack which is sub-
jected to an equivalent tensile force. The fictitious crack is propagating in mode I. The 
equivalent tensile force is a function of the normal stress and shear stress applied to 
the real crack. For the sake of simplicity, the following linear function is used in the 
present work: 

 [ ]( , , ) ( ) 0n rF n r r f r Cs t= + - Łr r
σ , (13) 

 . .n n ns = r r
σ ,   ( ) ( )n n nt s= × × - Är r r rd , (14) 

where σn is the normal stress applied to crack surfaces, and tr  denotes the shear stress 
vector applied to the crack. This shear stress is generated by the macroscopic devia-
toric stress and represents the driving force for the crack propagation. The term with 
the normal stress allows us to take into account the pressure sensitivity of frictional 
materials. The parameter Cr denotes the material resistance to crack propagation, 
which is physically equivalent to the critical toughness (KIc) in fracture mechanics. 
f (r) is a scalar valued function controlling the kinetics of crack propagation. Its role is 
similar to that of the hardening-softening function in plastic models. The expression of 
this function may be determined from relevant numerical results of micromechanical 
models and from numerical fitting of experimental data. The general form of the func-
tion must, however, satisfy certain requirements. For small crack extents, it should 
decrease, reflecting the relaxation of local tensile stress as the crack grows away from 
the source; as the crack length becomes large enough to interact with the stress fields 
of other nearby cracks f (r) increases or reaches an asymptotic value. The first effect 
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causes initially stable growth and the second marks the onset of accelerated crack in-
teraction producing damage localization and macroscopic failure. The following sim-
ple function having these basic features is here used: 

 
( ) ( ), ,

( ) , ,

f
f

f

r
f r r r

r
f r r r

h

h

ěď = <ďďíď = łďďî
 (15) 

where rf is the critical crack radius for instable propagation of microcracks, and η is 
a model parameter. By putting r = r0 in equation (13), we obtain the damage initiation 
surface in stress space. Similarly, by putting r = rf in equation (13), the macroscopic 
failure surface in stress space can be determined. Therefore, the stress levels at the 
onset of damage growth and at the macroscopic failure state can be entirely deter-
mined for any loading paths. The values of the three parameters involved in criterion 
(13) can be determined from the stress–strain curves obtained from triaxial compres-
sion tests. For example, the onset of damage initiation is identified as the point of 
a stress–strain curve where the linear relationship is lost. The failure state is deter-
mined as the pick stress of the stress–strain curves. 

3. DETERMINATION OF PERMEABILITY VARIATION 

3.1. DAMAGE-INDUCED DILATANCY  

According to the closure condition of microcracks (5), the crack is closed under 
a compressive normal stress. The normal displacement jump vanishes. However, in 
geomaterials like rocks and concrete, actual crack surfaces are not smooth and contain 
different kinds of asperities. The roughness of crack surface depends on the microstruc-
ture of material (grains and cementation). Due to these asperities, a normal aperture can 
take place during the relative shear sliding along the crack surfaces. This normal aperture 
generates a macroscopic volumetric dilatancy, which is commonly observed in brittle 
geomaterials. Further, in closed cracks, the shear sliding is governed by the local friction 
law, for instance the Mohr–Coulomb law. The friction law generally induces 
a hysteretic behaviour during the loading–unloading process. As a consequence of the 
macroscopic behaviour, hysteretic loops are observed during unloading–reloading cy-
cles. However, this hysteretic phenomenon is not studied in this work. 

Let us denote the normal aperture of cracks in the orientation nr  by e( )nr . It is 
a constant (in average sense) for a penny-shaped crack. Therefore, the tensor of dam-
age-related irreversible strains in the constitutive equations can be determined by the 
integration of normal aperture over all the space orientations: 
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 hom r= : σ +Se e ,   
2

21 ( )( )( )
4

r

S

N e n n n r dSp
p W

= Äň
r r r

ε . (16) 

The evolution of the normal aperture is associated with the rate of damage evolu-
tion. It is assumed that the normal aperture increment is proportional to the increment 
of average crack radius, that is, de drc= , with c  being a proportionality coefficient 
depending on the geometrical roughness of the crack faces. In general, the propor-
tional coefficient c  should be a function of damage state. However, in the present 
work, only a constant value is used as a simplified case of the model. 

3.2. ESTIMATION OF THE PERMEABILITY VARIATION 

The permeability of a cracked medium is composed of two parts; the initial perme-
ability k0 due to initial porosity and the crack enhanced permeability kc. The total 
permeability is given by k = k0 + kc. In this work, a simplified case is considered. It is 
assumed that all cracks are embedded in a porous medium and then connected to the 
pore networks. In real situations, a certain number of cracks may be hydraulically 
isolated and do not contribute to the variation of permeability. Therefore, this assump-
tion should lead to an overestimation of the real permeability variation. The crack 
permeability is essentially due to the crack aperture and evolves with crack propaga-
tion. The average crack aperture is associated with crack radius. Therefore, the crack 
permeability directly depends on the microcrack distribution, which is determined 
using the anisotropic damage model presented in the previous section. As the micro-
crack distribution is orientation-dependent, the crack permeability induces an anisot-
ropic character of fluid flow. 

Let us consider now a representative volume element (RVE) of rock mass, composed 
of a porous matrix and the microcracks being distributed at random, subjected to 
a uniform pressure gradient on the boundary. If all the cracks are fully interconnected to 
make a flow network, the RVE can be assumed to be a homogeneous, anisotropic porous 
medium. It obeys Darcy’s law, the apparent flow velocity vr  of fluid is related to the 
macroscopic pressure gradient pŃ  through a linking symmetric tensor k called the per-
meability tensor: 

 
0( )c

v p p
m m

+= - Ń = - Ńk kkr , (17) 

where µ is the dynamic viscosity of fluid. 
The present study is now focusing on the determination of crack permeability. The 

crack permeability tensor kc is regarded as a function of the crack orientation nr , aver-
age radius variation ( )r nr and average aperture ( )e nr . For the set of cracks in the given 
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orientation nr , the fluid flow velocity is assumed to be described by the Navier–Stokes 
equation for laminar flow between two parallel plates: 

 λ 1( ) ( )˛( )( )
12

c cv n e n n n p
m

= - - Ä Ńr r r r r
δ , (18) 

where ( )cpŃ  is the local pressure gradient applied to the crack. δ denotes the second-
order unit tensor. The positive scalar λ, less than the unity, is introduced to take into 
account the fact that every part of a crack does not work as a conduit. But some parts 
may be left as dead end. When λ = 1, the classic cubic law is recovered (SNOW [14]). 
However, it is important to point out that the use of the Navier–Stokes equation for 
flow in cracks represents a quite strong assumption. The validity of this equation for 
fluid flow between rough surfaces of crack is not proved. It is used here for the sake of 
simplicity because it provides real flow regime with the first approximation. The local 
pressure gradient may be related to the macroscopic gradient by an appropriate localiza-
tion law (DORMIEUX and KONDO [5]). In this model, we have used a simplified law by 
assuming that ( ) .cp pŃ = Ńδ . This implies that the local pressure gradient is also 
uniform and equal to the macroscopic one. Therefore, local deviations of pressure 
gradient are neglected. By analogy to Voigt’s bound of elastic compliance tensor of 
a cracked material, this simplification should correspond to the upper bound of crack 
permeability.  

The macroscopic fluid velocity vr  is determined from the average of local crack 
velocity cvr  over the related volume: 

 
0 01 1

c

c c cv p v d p v d
W W

W W
m W m W

= - Ń + = - Ń +ň ňk kr r r , (19) 

where Ω c denotes the volume occupied by the microcracks. According to the anisot-
ropic damage model presented in the previous section, the volume occupied by the set 
of cracks in the orientation nr  may be expressed by 2( ) . ( ). ( )cd n N e n r nW p=r r r . The 
total crack volume can be obtained by integration over all the space orientations. 
Therefore, the macroscopic velocity can be rewritten as: 

 
2

0
21 ( ) ( ) ( )

4
c

S

Np v n e n r n dSp
m W p

= - Ń + ňkv rr r r r . (20) 

Introducing equation (18) into (20), the macroscopic flow velocity is finally ex-
pressed by: 

 
λ

2

0
3 21 1 ( ) ( ) ( ) .

12 4
S

Np e n r n n n dS pp
m m W p

ć ö÷ç= - Ń + - - Ä Ń÷ç ÷çč ř ňkvr r r r r
δ . (21) 
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Comparing (21) with the macroscopic Darcy law (17), the macroscopic crack per-
meability tensor can be determined as follows: 

 λ

2

3 21 ( ) ( ) ( )
12 4

c

S

N e n r n n n dSp
W p

= - Äňk r r r r
δ . (22) 

By using the same numerical integration method as that used for the calculation of 
effective elastic compliance tensor, the components of the crack permeability can be 
approximated by: 

 
λ 3 2

1

2 ( ) ( ) ( )
12

gN
c

k k k k k
k

N w e n r n n np
W =

= - Äĺk r r r r
δ . (23) 

4. NUMERICAL SIMULATIONS 

The coupled model proposed contains 9 parameters, which can be determined from 
a series of triaxial compression tests with different confining pressures. The initial 
elastic constants of intact material, i.e. E0 and 0n , are determined from the linear part 
of stress–strain curves. The parameters involved in the crack propagation criterion, i.e. 
r0, rf, η and Cr, can be identified drawing the damage initiation surface (initial yield 
surface) for r = r0 and the failure surface for r = rf in the conventional p–q stress plane. 
The damage initiation surface is determined from the stress level where the linearity is 
lost, while the failure surface is obtained from the peak stresses. The normal dilation 
parameter χ and the crack number involved in the RVE can be estimated from the 
non-linear responses of the axial and radial strains during a triaxial compression test. 
Finally, the roughness coefficient of crack faces λ can be determined from experimen-
tal data on the increase of permeability during a triaxial compression test. The model 
proposed is applied to a typical brittle rock, sandstone. For this material, the typical 
values of model parameters are as follows: 

0 20300 MP aE = , 0 0.26n = , 

3
0 3 10 mr -= ´ , 39 10 mfr -= ´ , 1.06 MP a mrC = , 39.75 10h -= ´ , 

66.3 10N = ´ , 0.0005c = , λ 0.083= . 

Figures 1 and 2 show the simulation of two triaxial compression tests. There is 
a good agreement between the numerical simulations and experimental data. The ani-
sotropic damage proposed describes the main features of mechanical behaviours of 
typical brittle rocks such as non-linearity, volumetric dilatancy and pressure depend-
ence. For the determination of the variation of permeability due to crack growth, an 
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isotropic initial permeability is assumed. Further, in each orientation, the number of 
microcracks remains the same, but the average crack radius is different. The average 
radius of cracks in each orientation is explicitly determined by the propagation crite- 
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Fig. 1. Simulation of a triaxial compression test at 5 MPa confining pressure 
(the continuous lines are numerical simulations) 
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Fig. 2. Simulation of a triaxial compression test at 20 MPa confining pressure 
(the continuous lines are numerical simulations) 
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Fig. 3. Variation of the axial permeability due to crack propagation in triaxial compression 
tests at different confining pressures 

 
rion, and the average normal aperture is determined using the dilatancy coefficient. 
Numerical predictions of the variations of permeability in the axial direction during 
a triaxial compression test are shown in figure 3 for different confining pressures. 
Unfortunately, experimental data on the permeability variation are not available for 
this rock under such test conditions. It is then impossible to give a quantitative com-
parison. However, from the qualitative point of view, these are qualitatively in agree-
ment with experimental data obtained in brittle rock materials, mentioned in the first 
part of the paper. 

5. CONCLUSIONS 

An anisotropic damage model is proposed by taking into account the variation of 
permeability due to growth of microcracks. The formulation of the model is based on 
micromechanical analysis and experimental evidences relating to brittle materials like 
rocks and concrete. The damage evolution is determined from the crack propagation 
condition. By assuming fully connected microcracks, the permeability variation due to 
crack growth is explicitly coupled with the evolution of mechanical damage of mate-
rial. The roughness of crack faces is taken into account. The model proposed is able to 
describe the main features of mechanical behaviours of brittle materials and the cou-
pling with hydraulic flow. The simulations given by the model proposed are qualita-
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tively in agreement with experimental data. However, it is a progressing but promising 
work, extensive experimental validation will be necessary to check the performance of 
the model. Some extensions could also be introduced, for example, considering a par-
tial crack connectivity, to improve the performance of the model.  
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