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Abstract: When designing composite beams it is important to assure an appropriate stiffness of con-
crete-steel connection to achieve the strength required and the useful parameters. Many factors influ-
ence the features of composite beam. One of them is a function of connectors’ density. Usually de-
signers apply a uniform distribution of connectors along beam length, although it hardly ever is an 
optimal solution. In this article, you can find the solutions of displacements for simply supported 
composite beam with three different ways of connectors’ spacing along its span. The results are pre-
sented as the ratios of the corresponding deflections of the equivalent fully composite beams. 

Streszczenie: Podczas projektowania belek zespolonych ważne jest zapewnienie odpowiedniej sztywno-
ści w połączeniu betonu i stali, co zapewnia wymaganą sztywność i odpowiednie parametry użytkowe. Na 
właściwości belek zespolonych ma wpływ wiele czynników. Jednym z nich jest funkcja rozkładu gęstości 
podłużnej łączników. Zwykle projektanci stosują równomierny rozkład łączników zespalających wzdłuż 
osi belki, choć rzadko jest to rozwiązanie optymalne. W niniejszym artykule można znaleźć rozwiązania 
przemieszczeń belki zespolonej o schemacie statycznym wolnopodpartym dla trzech różnych sposobów 
rozmieszczenia łączników zespalających na długości przęsła. Wyniki przedstawiono jako współczynniki 
odpowiadających przemieszczeń dla belek z całkowitym (sztywnym) zespoleniem. 

Резюме: Во время проектирования соединенных балок важным является обеспечение соответству- 
ющей жесткости соединения бетона и стали для достижения их требуемой жесткости и эксплу- 
атационных параметров. На свойства соединенных балок влияют многие факторы. Одним из них 
является функция распределения продльной плотности соединению Обычно проектировщики 
применяют равномерное распределение связывающих соединений вдоль оси балки, несмотря на 
то, что это решение редко является оптимальным. В настоящей статье можно найти решения 
смещений соединенной балки статической, свободнокрепленной схемы для трех разных способов 
распределения соединяющих элементов на всей длине пролетаю Результаты были представлены 
в виде коэффициентов соответствующих смещений для балок с полным (жестким) соединением. 

1. INTRODUCTION 

In recent years, constructors have commonly applied composite structures. The 
most popular elements of this type became steel–concrete beams. In such supporting 
elements, a reinforced concrete and steel (two different materials), joined together by 
special connectors, co-operate in load bearing. 
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Based on the experience gained it is known that in an optimal connection between 
steel and concrete, fewer number of connectors should be used than in fully composed 
beams [1], but simultaneously connectors must be so flexible as to assure a certain slip 
in the steel–concrete surface. Therefore current practice [2], [3], [4] permits composite 
beams to be designed with partial shear connection. 

Practical methods of calculation of composite girders with partial connection were de-
veloped. Displacements of beams with partial connection are shown at some charts [5], 
[6], [7], [8] representing many static schemes and ways of loading. The displacements at 
charts are identified as dimensionless ratios being the quotients of displacements of beam 
and displacements of an equivalent beam being fully jointed. For the sake of comparison 
of the results achieved, similar characteristics were used in this article. 

In all the papers mentioned above, calculations are based on the assumption that 
the convectors are equally spaced along a span. It is also commonly known that for 
simply supported beams a shear force in steel–concrete surface is concentrated to-
wards supports and decreases to zero at midspan. An increase in the efficiency of con-
nection may be achieved by non-linear connectors’ density function which assures 
greater stiffness of connection in the supporting area. 

2. SOME CHOSEN CHARACTERISTICS OF CONNECTORS’ DENSITY 

The method of calculating displacements of composite girders with partial connec-
tion at three different connectors’ distributions is presented. In this article, we try to 
answer the question about the influence of connectors’ density function on bending 
stiffness. Three options of connection are considered and presented in the form of the 
following mathematical formulas: 

a) uniform connectors’ distribution 
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c) parabolic connectors’ distribution 
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where: 
KS  – the connector modulus for the case of uniformly spaced connectors, 
G  – the connector modulus at support, 
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L  – is the beam length, 
a  – the distance from the point of maximum bending moment to support. 
Functions )(1 xg , )(2 xg , )(3 xg  fulfil the condition: 

/ 2 / 2 / 2
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where L is the beam length. 

3. THEORETICAL ANALYSIS 

3.1. ASSUMPTIONS 

Theoretical analysis presented in this work is based on the following assumptions: 
a) concrete and steel are linear elastic materials and each of them has the same 

elastic modulus in tension and compression, 
b) the shear connection between the concrete and steel beam is continuous along 

the beam, 
c) the extent of slip permitted by a shear connector is directly proportional to the 

load transmitted, 
d) the concrete slab and the steel beam deflect equally at all points along the span, 
e) shear connectors have the same modulus and the shear connector density varies 

along the span from maximum value to zero at the point of maximum bending moment, 
f) the analysis presented concerns exclusively the simply supported, symmetric 

beams, therefore all calculations are done for x values greater than 0 ( 0≥x ) (see fig-
ure 1). 

W

X
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Fig. 1. Static scheme of the beam tested 
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3.2. STATIC SCHEME 

Further analysis was conducted for simply supported, symmetric beams (figure 1). 
The analysis is supplemented by the value a which makes the calculations more 

transparent and clear. This value represents the distance from the point of maximum 
bending moment to support. In the example analyzed a = L/2. 

3.3. CALCULATIONS, ANALYTICAL PART 

A parabolic function of connectors’ distribution presented in [9] was taken into 
consideration on the basis of differential element dx (figures 2, 3). 
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Fig. 2. Differential element of composite girder 
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Fig. 3. Free body diagram of the upper component 

Differential element of composite beam consists of concrete part (1) and steel part 
(2) (figure 2). The horizontal equilibrium of the upper component (figure 3) gives: 
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dx
dFq 1= . (1) 

The expression for the strain at interfaces of both components ((1) and (2)) may be 
given by: 
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Relations between the elements (1) and (2) at the slip interface s and the strains 
shown above as well as their relation to shear flow are expressed as follows: 
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Inserting equation (1) into (4) and assuming that FFF == 21  we arrive at: 
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In the following step, expressions for strains (2) and expression (6) are inserted 
into equation (3): 
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Having used the curvature which is given by: 
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equation (7) may be expressed by: 

 
2 2 2 2

2 2 3 2 2
2 1 4 1 .
3 3
a d F a dF G b G bH F M
G G dx Jx dx x a a J

  ⋅
⋅ − ⋅ − ⋅ + ⋅ = − ⋅ 

⋅ 
 (9) 



P. ADRJAN et al. 80 

Introducing the concept of transformed section (change to steel) as well as deriving 
expression (9) by the following substitutions: 
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where: 
tJ1  stands for the moment of inertia of transformed section of component (1), i.e. 

concrete,  
tA1  is the transformed area of component (1), i.e. concrete. 

Differential equation (10) was transformed in the way that would allow the expres-
sion for the function F to be found. Having obtained this, it was inserted into (8). After 
all these transformations the following expression is obtained: 
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In further analysis, appropriate expressions were substituted for 1G  and 2G  as well 
as relation (12) was adopted based on [10]. 
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where I is the moment of inertia of transformed, fully composite section. 
After making few simple transformations, equation (11) may be expressed in its fi-

nal form: 
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A system of two differential equations, (10) and (13), was obtained as a result of 
the analysis presented. In these expressions, the unknowns represent the functions F(x) 
and y(x), while M is a known function of bending moment. 

By analogy, similar analyses were made for two last functions of connectors’ 
density )(1 xg  and )(2 xg . Two other systems of differential equations were derived. 
The functions representing three ways of steel–concrete connections are gathered 
below: 
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a) the function )(1 xg  – uniform distribution: 
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b) the function )(2 xg  – linear distribution: 
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c) the function )(3 xg  – parabolic distribution: 
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The dimensions of the constants G1 and G2 in each of the points ((a), b), c)) are dif-
ferent. Depending on a further analysis carried out based on this method, it will be 
useful to express the constants mentioned above in the same dimension in order to 
make their comparison easier. 
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3.4. CALCULATIONS, NUMERICAL PART 

Owing to the difficulties in finding an exact solution of differential equations’ sys-
tems mentioned in point 3.3, a numerical analysis was applied. This differential prob-
lem was solved by using MATHEMATICA’s 4.0 interface. The differences in three 
cases of connectors’ distribution were calculated for a composite girder shown in fig-
ure 4 and described in table 1. 

   a)    b) 
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Fig. 4. The girder tested: a) static scheme, b) cross-section 

T a b l e  1 

Data for numerical example 

Features of 
concrete slab  

Features of 
steel beam 

Connection Length 
and loading 

bf = 96 cm 
tf = 8 cm 

E1 = 27000 MPa 

h = 450 mm 
J2 = 33740 cm4 
A2 = 98.8 cm2 
E2 = 205 GPa 

mm
kN40=k  L = 8 m 

m
kN30=w  

A comparison of the results of calculations made for all three cases of connectors’ 
density function based on the example of grider is given in table 2. Because of 
a symmetric problem these results are presented for positive values of x only. Charts 
of the unknown function F(x) are not present in table 2. These values are necessary as 
an indirect step of calculations only. 

In the case of the example presented, the displacement of a steel beam without any 
connection is y(0) = 0.0231324 [m], but for a fully connected composite beam it is 
y(0) = 0.0112457 [m]. 
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T a b l e  2 

Comparison of results of numerical calculations 

 Function of 
connectors’ density Chart of displacement y(x)  

Value y(x) 
at x = 0 [m] 
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Comparing the results obtained with these presented in [5], [6], [7], [8], the follow-

ing ym/yfm ratios were calculated: 
a) for uniform connectors’ distribution: 
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b) for linear connectors’ distribution: 

425.1=
fm

m

y
y , 

c) for parabolic connectors’ distribution: 

399.1=
fm

m

y
y , 

where: 
ym – the displacement at the midspan of partially composite beam, 
yfm – the displacement at the midspan of fully composite beam. 

4. GENERAL CONCLUSIONS 

1. In this article, a way of calculation of partially composite beams is presented. 
This way is based on numerical solution of theoretically derived systems of differen-
tial equations for simply supported composite girders. 

2. The presented way of arriving at this solution may be used for each static 
scheme and for each composite girder (with each connection feature). 

3. Differential equations for three different cases of partial connection are pre-
sented. The largest bending stiffness was achieved at parabolic connectors’ distribu-
tion. 

4. The bending stiffness of the beam may be increased when the connectors are 
concentrated towards supports. 

5. The authors decided to carry out a numerical analysis, even though there was 
a possibility of finding an exact solution for two of three cases presented. This way of 
analysis allow them to find further solutions for more complicated problems with 
fewer number of simplifying assumptions. This way of analysis requires writing a spe-
cial computer program. 
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