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Abstract: An analytical method for the determination of th&h&lby tenso8 associated with an ar-
bitrarily oriented crack in an orthotropic elastiedium is first presented. The crack is modelled as
an infinite cylinder (with low aspect ratio) alonge symmetry axis of the solid matrix. The proposed
methodology yields explicit expressions of the Hspaensor (or equivalently the Hill tens#)
which show the interaction between the structuras@ropy and the cracks-induced anisotropy.
These results are then introduced into a Mori—-Tarf@mogenization scheme in order to determine
the macroscopic quantities (stiffness tensor, gnefthe cracked media. A last part of the stugly i
devoted to the formulation of an anisotropic damagelel based on the micromechanical results.
The ability of this model to describe the inelagt@haviour of brittle matrix composites is demon-
strated. Moreover, quantitative comparisons withegimental data on a Ceramic Matrix Composite
(unidirectional SiC-SiC) are provided.

Streszczenie: Przedstawiono analityczanmetod wyznaczenia tensor Eshelbyego spezonego

z dowolnie zorientowanymefnieciem w ortotropowym &rodku spezystym. Rkniecie to jest mode-
lowane jako nieskiczony walec (z matym wydieniem) wzdta jednej osi symetrii sztywnego
wzmocnienia. Dziki zaproponowanej metodzie otrzymano jawne wgméa tensora Eshelbyego (lub
réwnowanie tenso Hilla), ktére pokazyj interakcg miedzy strukturala anizotropa a anizotropi
spowodowan przez gkniecia. Wyniki te wprowadzono naginie do uktadu homogenizacyjnego
Moriego—Tanaki, aby wyznac&ymakroskopowe wielkai (tensor sztywnéxi, energe) spckanego
osrodka. Ostatni cze$¢ artykutu pdwiecono stworzeniu modelu anizotropowych uszkadae pod-
stawie danych mikromechanicznych. Wykazaremodel opisuje niesgityste zachowanie skom-
pozytow z kruchym wzmocnieniem. Poréwnanoztaklosciowe i dédwiadczalne dane dotyaze
kompozytu z ceramicznym wzmocnieniem (jednokieramk&iC—SiC).

Pestome: IlpencraBieH aHaIUTHUSCKUII METOA ONpeneseHus: TeHcopa § Diens0ou, conpsHkeHHOTo
C IPOU3BOJILHO OPUEHTUPOBAHHOW TPEIIMHON B OPTOTPONHOW YNpyrou cpeme. JTa TpeuiuHa Oblaa
MOJENUPOBaHa KaK OCCKOHCUYHBIM LMIMHAD (C MJbIM yMIHHEHHEM) BIOJb OJHONH OCH CHMMETPUH
JKECTKOTO yKperneHus. brarogaps mpeamnonaraeMoMy MeTOAy OBUIM TOJIydeHbI SIBHBIE BBIPAXKEHHS
teHcopa Omensbu (wm Tercop P I'miuta), KOTOpbIC MOKAa3bIBAIOT B3aUMOICHCTBHE MEXKIY CTPYK-
TYpPHOH aHM30TPONMEH, BBI3BAHHON TpEIMHAMU. 3aTeM 3TH Pe3ylbTaThl ObUIM BBEJEHBI B TOMOTEH-
HyI0 cucteMy Mopu—TaHaku [s ONPEIeTeH ST MUKPOCKOIIMYECKUX Pa3MepoB (TEHCOpa KECTKOCTH,
9HEPrHH) TPEIIMHOBATOM cpeabl. I10CaenHsIs YacTh HACTOSIIEH CTaThH MIOCBAIIECHA TOCTPOCHUIO aHHU-
30TPONHBIX MOJEJEH MOBPEXIECHUH HAa OCHOBE MHUKPOMEXAHMUYECKUX IAaHHBIX. BbIIO 0OHapyeHo,
YTO MOJIEb OMHCBIBAET HEYNPYroe MOBEJICHHE KOMIIO3UTOB C XPYNKUM YKpeIieHHeM. bputn Taxxe
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CPaBHEHBI KOJIIMYCCTBEHHBIC M IKCIICPUMEHTAIIbHBIC JAHHbIC, KACAIOLIMECS KOMIIO3UTa C Kepamuye-
ckuM ykperuienieM (oguoHanpasienHbiii SiC—SiC).

1. INTRODUCTION

One of the basic mechanisms at the origin of itiela&formation of a large class
of materials ranging from geologic materials (seshtary rocks) to man-made mate-
rials (concrete, ceramic matrix composites) is ogcacking. Classically, the me-
chanical behaviour of such deteriorating matenslsodelled in the framework of
Continuum Damage Mechanics by using either purehcroscopic approaches or
homogenization (upscaling) techniques. In the cardgé upscaling techniques, the de-
termination of the overall properties of a crackeaterial implies the calculation of
the Eshelby tensd® (or equivalently the Hill tensdP) associated with any crack.
Various works concern linear elastic isotropic dohatrix containing penny-shaped
cracks (see, for instance, [3], [12], [13]). Foe tase of materials exhibiting a struc-
tural (primary) anisotropy, few results exist itefiature. They all correspond to the
case where the crack is in one of the symmetrygslanf the solid matrix (see [7], [8],
[10]). For an arbitrarily oriented crack in an arepic matrix, the principal diffi-
culty comes from the fact that the Green functiorr&sponding to anisotropic solids
(from which is classically determined the analytiegpression oP) is not known in
general. The objective of this study is twofold:

(i) To provide new analytical results of the Eslyeiensori in the case of arbitrar-
ily oriented cracks embedded in an orthotropicdsoiatrix. Our approach is based on
a method first introduced bylKOSHITA and MJURA [6] and RAIVRE [5].

(ii) To implement the new results in an homogemirascheme, namely the Mori—
Tanaka model, in order to determine the macroscogiperties of the cracked mate-
rial. This scheme serves as a basis for the deweop of an anisotropic damage
model which is then applied to a composite mateBaimmation convention on re-
peated indices is adopted.

2. HOMOGENIZATION SCHEMES APPLIED TO CRACKED MEDIA:
BASIC PRINCIPLES

2.1. METHODOLOGY AND PRINCIPLES

Consider a representative elementary volume (y.€womposed of an orthotopic
solid matrix weakened by a system of parallel micaoks whose unit normal is de-
noted byn. Uniform strain conditions are prescribed on thertwzwyo.2 of this r.v.e.
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The microscopic displacement fiel and stress field are extended into the

crack (fissure) which is viewed as an elastic niattevith the stiffnes€' = 0 (only
opened cracks are considered). The mechanicalgmotéfined on the r.e.¥2 there-
fore reads:

divo =0, (1a)
—vyvf = f

o=X(2):e with X@FX =0for 2007 (1b)
X(2) =X°® for zOQ°,

F=EZ for zOoQ. (1c)

A crucial step of upscaling technigues consistdinding the localization rule
which relates the microscopic strain field to th@cnoscopic one:(x) = A(x) : E. The
macroscopic stressis therefore defined by:

S =0(x) =C(x): £(X) =C(X): A(X) :E=C"™: E. (2)

It follows that the homogenized stiffness ten€8Y" reads:
Crm=Cs+¢'(CT-C%):A=C:(1-¢'A"), 3)

in which the coherence conditioh(x) =1 , coming from the application of the aver-

age rule on strain, is useg' is the volume fraction of cracks.

The localization problem is classically solved bkihg advantage of a fundamen-
tal result of micromechanics associated with theated Eshelby inhomogeneity
problem [4]. For an ellipsoidal inhomogeneitgmbedded in a solid matrix, the mi-
croscopic strain takes the form:

g =(1+MN:5C)™E, (4)

wheredC = €' —C° (= —C° for opened cracks).
For simplicity, one introduces the Eshelby tensor:

S=P:C°, (5)
from which equation (4) is rewritten in the form:
g =U-8)":E. (6)

The first simple micromechanical model consistmaking use of (6) as the local-
ization relation; however, such a model, classjcadferred to as the dilute scheme, is
limited to an infinitesimal concentration of inclass. In order to overcome this limi-
tation, a more suitable scheme is due.
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2.2. THE MORI-TANAKA SCHEME APPLIED TO CRACKED MEDIA

The Mori—-Tanaka approach aims at accounting foiirtteraction between cracks.
The principle of this method consists in embeddingrack in an orthotropic solid
matrix submitted, not in the macroscopic stfgjrbut in a fictitious straife®. Adapt-
ing the Eshelby result, the localization relatiéh takes then the form:

¢'=@-8)": E,. @)
The application of the strain average rule gives:
(1-¢")Eo+¢'e"=E. ®)
Combination of (7) and (8) yields:
Eo=[1-¢" ) +g'X-8)"™":E ©)
Reporting this result in (7) yields:
Al =(-a-g ) +4 (1 -7 (10)
The Mori-Tanaka estimate 8f°"is eventually derived from (3)
X" =1-g )X (1= +4 (1 -2 (11)

In conclusion, it appears that the determinatiothef homogenized stiffness (or

compliance) tensor requires evaluation of the Hsh&tnsorS (or equivalently the
Hill tensorP given by (5)).

3. DETERMINATION OFP FOR AN ARBITRARILY ORIENTED CRACK
IN AN ORTHOTROPIC MEDIUM
3.1. INTRODUCTION

Consider now an orthotropic solid matrix (with tstiffness tenso€®) weakened
by a crack geometrically described in its locahfeaby:

2 2
%+%: —00<Z,<00, (12)

This corresponds to the modelling of the crackreisifnite cylinder in the direction 3,
with an elliptical section and a low aspect raie= b/a (see figure 1). Let us first recall
that the components of the solid matrix stiffnessor in the local frame (characterized by
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the angled) with respect to the symmetry axis 1 of the matnig abtained from
a classical transformation rul€y,, =U;,U,,U,UC,., where the tensdd reads:

cosfd -sind O
U=|sind cosd O]. (13)
0 0 1

<
[ Sty e

Fig. 1. Crack modelled as an infinite cylinder wétliptical section;
the aspect ratio X = b/a

In the local frame of the crack, the stiffness terihen depends on the anglde-
fining the crack plane and presents an apparenbatioic symmetry. Determination
of the tensog, which is based — as previously mentioned — owitidk of KINOSHITA
and MURA [6], (see also BVRE [5], LAwS [7] or WILLIS [16]), implies that we can
calculate the integral:

ijkl T ) (azgle +b2$22)

dy . (14)

The integration is performed on the unit circleteeed at the origin, in the plane
(¢ &) [§]1=1(e.g..§ =cosye + sinyey). The components of the fourth-order ten-

soré read:
Niwi (¢1, &2) = Dija (&1, &2, 0) (15)

with:

Di =%(<tin_k<(| +& Ky 6 +<tin_|1 k "'Ean_lfk)- (16)
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In (16),K = ¢.C.< represents the acoustic tensor associated@véthd the vec-
tor f by the reIationKik(f) = Cjéé. It can be noted that the anisotropy of the elas-

tic solid matrix affectd through the acoustic tenskr. Since the above expressions
imply a calculation in the local frame of the craPkdepends a priori on the orienta-
tion of the crack. Moreover, the component®afan be written in the form:

1
P :Z[Mijkl + My + My + My, (17)
where:

2n -1
_abJ' C(ink [ dy . (18)

3.2. DEVELOPED METHODOLOGY FOR THE DETERMINATION OFHE TENSORP

The starting point here is the recent study 0¥@&Rov and D/ORAK [14] which
follows the procedure described byN& and LEE [15]'. We consider then the two
fixed unit orthogonal vectors ande;, in the plane; = 0; any unit vector in this plane
reads thenf = cosye, + sinye,, from which it can be verified th&t = £ .C.¢ takes

the form:
K = (cow)’Q + cowssiny(R + R") + (siny)°T. (19)
Substitutingz = coty in this expression yields:
K(y) = (sip)1QZ + ZR +R") + T] = (siny)°’K (2 (20)
with:
K(2=2Q +zZR +R") +T. (21)
The second-order tensd@s R, andT are defined as:
Q=e.Ce, R=e.Ce; T=e.Ce. (22)

For the calculation oP (equation (16)), one needs to inv&rtz). The quantity
|K(2)| denoting the determinant &f(zZ) and K (z) its adjoint, one ha¥(2). K(z) =
|K(2)| 1, respectively:

! Note that these authors have not studied theafaitrarily oriented inclusions in an orthotropi
solid matrix.
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K(2)
|K(2)]

Similarly, for the tenson = ¢ ¢ which with K~ enters in definition (16), it can
be verified thatA(y) = (sip)’A@@Q WithA(D) =Ze, De +ze 0 e +e0e) +e 0
€. Moreover, we note that’é? +b?&; = (sing)?(a’z> +b* ).

Taking into account the variable charmye coty, the expression (18) reads:
_ab j K (24, (2 j XK (24 (2)

s (@22 +b%) IK(Z)I (Z2+X*)IQIf(2)

K™(2)= (23)

M ikl ~ (24)

T

where, with the help of (20), the identik(})| = Q| f (2) is used. We recall that =—

is the aspect ratio of the crack.

The interest of (24) lies in the fact that it alltne evaluation of M by using the
residues theorem, the function to be integrate go&éiolomorphic out of the poles
which must be determined. We note that £ iX are two of these poles. It is also
useful to emphasize that in the general ce&js a polynomial function of degree 6,
with three “pair” of complex conjugate roots. Ohwsty, these are the roots ¥{z) =
0. Notingz,(p = 1, 2, 3) the roots with positive imaginary partedras:

f@=(z - 2)(z-2)(2z-2.)(2- %) (z2-2)(z- Z). (25)

The tensor M can then be determined by the appiicatf the residues theorem;
this is done in the next section.

4. ANALYTICAL DETERMINATION OF THE TENSORP

4.1. EXPRESSION OF THE COMPONENTS OF HILL'S TENS®R

In the case of the crack with an arbitrary oridotat{represented by) with re-
spect to the symmetry axis 1 of the matrix, thecudation performed in the local
frame of the crack leads to a polynomial functiohdegree 6). This one appears as
the product of 2 polynomial functions of degreend degree 2:

K@I = RIf(2 =f(2) (2. (26)

Expressions ofy(z) andfy(2) are presented in Appendix A. The determin&it |
takes the form:

Q|=C5,.Cu(cog 8 +asin® B)(cos 8+ Bsin® §)(CS,,,Sin° @+ CSa c08 ) . (27
11111212 3232 3131
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The solutions ofy(2) = 0 are:

:i\/Ecosé?—sinH_ 7= iva cosd +sing
cosd+iasing’ —cosf+ivasing’ (28)
_iyBcosf-sind  _  i\/[cosd+sing

H =

cosf+iBsing’ 7’ -cosd+iBsing

with a andf, the complex conjugate roots of the characteregjgation of the ortho-
tropic 2D solid:

s S S —_
llll 1212 ( llll 2222 C1122 2C1122C 212)X+C2222C1212 0. (29)

The roots of, = 0 read:

Sln(29)(C3232 +Cjy3p) + 2 VC 323C3131 COSEH) |
2(C35,€08 8+ CS,q,SiN” 6) '

7= _ SiNE@8)(Czaso + Ci1an) = 214 C353C5131 COSRH)
2(C35,€08 8+ CSa,Sin® ) '

(30)

Then, by identification with (28) and (30K (2)| can be rewritten in the form:
K@|=RIz - z)(z-2)(z2-22)(2 - ) (2 - 2)(z—- Z) . (31)
The poles being assumed distinct, the expressidh @quation (24)) reads:

Mijkl—z{l Ru)8, (%) , o Ru(@)by @)X }

=2id = (32)
2 1QIf(X)  FIQIf'(Z)X*+7)

for which it is recalled thatzjk are the components of the adjointkof
The approximation at the first orderXmat the valueX = 0 gives for (32):
~_Ky 04,0
o tOIQl
42X > Kjk(’;)Auz(a) L1
Q] f'(z)z 2f(0)

[K}k 014, 0+ K, 008 0) =K 0, 0 }}

(33)

The imaginary part of M is null:
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(My) = 2X 0 Kjk(lzl)Ailz(Zl) 40 Kjk(,ZZ)Ailgzz) 40 Kjk('23)AiI2(23)
Q1 f(z)z f(z)z f(z)z

X
+
21 O)|Q]

and its real part gives :

{[ L OA, 0+, 04) 0 ~K, 04, (O)ff((‘ﬂ} 0o (4

|ij ©4; (0) _2x Zs: ~Jk(Z|)AI| (z)
forRl RIE @z

Finally, these results being established in thealldcame of the crack, a last
change of basis allows us to expr®s the global frame defined by the symmetry
axes of the solid matrix. The detailed expressifithe nine components #in this
global frame are given in Appendix A (equations4(\.

Mig =0(Mjyq) = (35)

4.2. VALIDATION OF THE RESULTS OBTAINED

The first validation of these results is done bygidering a system of parallel
cracks whose orientation coincides with the symynaxis 1 of the solid matrix. This
case has been studied bywis [7], who obtained the following non-zero comporsent
for the tensolP:

P = C3o0n+Cp 1210 OB © Py = 1 C23222 Ch(a+ [+ N )
CoiCn/apB (\/E + \/_ B) C23222 Coo i/ B (\/E + \/_ )
Cln+Chy 1 Ciia X: (36)

P =P = -
1122 ~ M2211 o+ X, Prgp=—— 312
S
ChulonaBVa +4B) 4Css  4CS,,

P = 1 X: P 1 C1111 2222 C1122
Cik IR e 1212 = 401 \/—
Ca23L1a1 212 ZC111101212 \aj BWa +\/_ B)

It can be easily verified that these expressioneapas a particular casé % 0)
of the general expressions (A.4) which were esthbll in the present study.

In order to determine the macroscopic propertietheforthotropic solid matrix
weakened by cracks, such general expressions aveinuorporated in the Mori—
Tanaka scheme already presented in subsection 2.2.
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4.3. THE MORI-TANAKA ESTIMATE OF THE HOMOGENIZED COMBANCE

The starting point is equation (11) which gives Meri—Tanaka estimate of the
the homogenized stiffness tensor of the crackedumedAs in [2], let us first intro-
duce the 2D cracks density parameter N & where N denotes the crack density (the
number of cracks per unit area) of the considests parallel cracks. The cracks
volume concentration reads thgh= 1N ab =dX. Noting thatg '] 1 and taking the
limit for low aspect ratio (lim. o), the homogenized stiffness tensor (see, for it&a
[3] for the case of isotropic solid matrix) given (11) takes the form:

CP"=C*: @ +mdT)™", where T = )I(imo X[I-8(X, n)]™, (37)
in whichn is the unit normal to the considered parallel csasystem.

By inversion, it follows that the compliance hompiged tensor can be put in the
form:

$""= M +mdT): (8 with T= )I(imo X[I-8(X, N)]™, (38)
in which 8° = (€% represents the compliance tensor of the solidirator a paral-

lel cracks system oriented with an andlésee figure 1), the non-zero components of
the homogenized compliance ten88t" are:

hom _ S5, +dn (S522553333~ S‘252332)(\/5 + \/E)@(Sine)z .
111 111 S ,

hom _ chom _ s . hom _ chom _ s . hom _ chom _ s . hom _ s .
122 = 2211 S.I.122' 133 7 3311 %133’ 2337 3322 822331 333 33333’

dr (S522555333~ 8252332)(\/5 + \/ﬁ )(cosh)? ;

hom _ cs
222~ S2222 +

S3a33

S 2 S S H
hom _ chom _ as d (Spos3 — 82222%333)(\/3 +\/ﬁ)\/ apBsinfcostd 39
112 = Sp111 = Syt dn s ; (39)

255333

S 2 S S H
hom _ chom _ s d (Spps3 — 82222%333)(\/3 + \/ﬁ)smé’cosﬁ :
212 = Sipp = Sypppt 2335 ,

333

S S S S
hom _ 335232"' dTE(Sing)z V %232%131 . hom _ 335131_'_ dTE(COSg)Z V %23235131 .

232~

2 ' 1317 2

2317 3132

/ s s
hom _ chom _ 3332314' dTESiI’]HCOSg 33232283131;
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S 2 S S H
i (So33 =~ SoprS5d (/@ + Y A)(SING)” +JaB(COD)] 5,
S§333
Note that the effect of cracks on the componenth®fhomogenized compliance
tensor depends on the elastic properties of thid swhtrix and greatly on the crack

orientation (defined by). Such a dependence accounts for the interacetwden
the initial anisotropy and crack’s orientation.

hom _ s
212 — S.L212 +

5. A 2D MICROMECHANICAL DAMAGE MODEL
FOR INITIALLY ORTHOTROPIC MATERIALS

In this section, we propose a micromechanical damagdel for initially ortho-
tropic materials. The model is based on the reguisented in the preceding section
and on the choice of a damage criterion which alake propagation of distributed
cracks to be described. Its predictive capabilitiess analyzed through an application
to a brittle matrix composite. Comparison with esimental data obtained by
AUBARD [1] on a SiC-SiC is presented and shows the wlafithe model proposed to
describe the overall stress response of this coitepsishjected to off axis loadings.

5.1. FREE ENTHALPY. DAMAGE PROPAGATION BY CRACKS GROWTH

For simplicity we present the free enthalpy for digstem of parallel cracks (denoted
byi):

w*:%z:g“’m(di):z. (40)

An estimate of$"™™d') is already provided by the Mori-Tanaka scheme (see
equations (38) and (39)). The first state law givesmacroscopic strain tender

=W _gom. 5 (41)
05

To complete the model one needs to adopt a damégeaan from which a dam-
age evolution law can be derived. For this purpdséeing the damage parameter,
the intrinsic dissipation reads:

*

p=W i —pdg (42)
od'

in which F®' is the thermodynamic force (energy release ra®)@ated with damage:



14 C.GRuUEscuet al.

i :aw*
ad'

Based on the above thermodynamic arguments brseftgmarized, the damage
criterion for the cracks family under considerataam be put in the form:

= (43)

fi(FY, dy=F" -R(d). (44)

Here the function R(') describes the curve of crack resistance to the gama
propagation; for simplicity, the following form &hosen:

R(d) = k(1 + rd"), (45)

wherek is the parameter which describes the damage thiceahds; accounts for the
hardening effect of the damage. The use of thisrion gives:

-if F9' <R(d"), then d' =0 (damageénitiation andpropagatio),

: . N (46)
-if F¥ =R(d"), thend' >0 (growingdamag}
The damage evolution is obtained by assuming tieaidy rule:
icd i
di :/.ldi M:/}di; /'ldi >0,
oF ¢
(47)

sogi =)0 i '<0, where(f' =0andf' <0),
Ay if £1=0 andf' =0

The damage multiplieyldi is derived from the classical Kuhn—Tucker consisée

condition: f = 0.

5.2. APPLICATION OF THE MODEL TO AN UNIDIRECTIONAL SiCsiC COMPOSITE

The purpose now is to apply the model being progpdsestudy the response of
a brittle matrix composite subjected to an uniakéalsile loading, with the objective
to check the predictive capabilities of the modéie experimental data come from
AUBARD [1]; this experimental study concerns an unidice@l SiC-SiC composite
subjected to an off-axis tensile loading in differdirections (described by the angle
@) with respect to one of the symmetry axis of theemalt (see figure 2). The elastic
moduli of the solid matrix, which is assumed torespond to the initial elastic
moduli of the composite, ar&; = 320000 MPaE, = 170000 MPa for the Young
modulus,G;, = 90000 MPa for the shear modulus arng= 0.18 for the Poisson ratio.
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Fig. 2. Representation of tensile test applied withanglep

The application of damage model implies also idixion of the parameteis
and 77 involved in the damage criterion, and of an initialue for the crack density
parameter. The identification procedure followedeheonsists in calibrating the
model parameters on the angle= (° tensile test. The validation of the model is done
from simulations performed on off-axis tests (witto angles of 20and 45). Be-
sides, the two model parameters entering in theadancriterion have the valuks
3.75 J.nt and 7 = 140, and the initial crack density parametgr 0.01. Finally, it
must be emphasized that the simulations were prddmwith a number of 60 distinct
crack families uniformly distributed.

350

T T —
experimental o

222 [MPa] simulation

300 -

250 |

200

50 -

Ep; [%]

s L 1 1 s L
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Fig. 3. Tensile test of SiC-SiC composite with °
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Figure 3 shows the stress—strain response forestenithg = (°; the good agree-
ment with the experimental data proves only theecehce of the identification pro-
cedure. The results predicted for the off-axis iogdests are presented in figure 4.
A good agreement with experimental data is agageoied. In particular, the relative
positions of the three curves (shown in figure f)ear as the consequence of interac-
tion between damage-induced and initial anisotropy.

300 T
experimental o
simulation

222 [ M Pa]

Ex [%]
.
0.006 0.007
= 200
250 T T
O matafon —
wlal —
Zy2 [MPa] ety
Ez [%]
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

¢ = 459

Fig. 4. Off-axis traction tests of unidirectionaCSSiC composite
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350

20 =
2y [MPa] opas
300 |

250 |

200

50 -

; Ea2 [%]
0 ,

L 1 L " 1 L
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Fig. 5. Comparison of the tensile tests of unidioewl SiC—SiC composite

6. CONCLUSIONS

The present study is devoted to a micromechanitallyais of an orthotropic me-
dium containing arbitrarily oriented cracks. Thegedure proposed has allowed us to
establish general explicit expressions of the Bghér Hill) tensor associated with
these cracks. The analytical results clearly stairtteraction between the cracks orien-
tation and the initial anisotropy of the materialconsequence of this interaction is the
loss of material symmetry due to the presence aifkst On the basis of the results ob-
tained, a new damage model for orthotropic material proposed, using a Mori—
Tanaka homogenization scheme and a damage critesisexd on energy release rate.
Numerical predictions of the damage model compagkk with experimental data on
a Ceramic Matrix Compaosite (SiC-SiC). Current wooksthis model deal with a de-
scription of cracks closure process which cladsicaicurs when the composite is submit-
ted to a compression loading. Finally, introductfriction phenomena on closed
cracks will be the focus of future developments.
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APPENDIX A.
ANALYTICAL EXPRESSIONS OFK (2| AND THE COMPONENTS
OF THE TENSORP

A.1. EXPRESSIONS OK(2), f(2) IN K (2)|

The two polynomial function(2), f,(2) are respectively:
£1(2) =[C11C1(C088)* +C3,,.Chns(SiNG)* + x(cosH)? (sind)?]2*
+{[ 2C}11C1(C089)? = 255, Ci15(SiNG)?] - y c0S26} sin267°
+{ X[L—6(c0s8)*(SiNB)*] + 6C.1,(Ci11 + Crp5)(cOSH)? (5in6) *} 2°
+[2C5,1Co15(SING)? + 2C5,,,CE,,,(COSA)? + x c0s26]sin20z
+C1CinaSING)* +C3plClirp(C0sH)* + x(siNG)? (cos)?, (A1)

where:

S S S 2 S S
X= (C111102222 ~Clip ~ 2C1122C1212),
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and:
f2(2) = (C3z3,8in” 6+ C35,C08 6) 2°
+(C3y50* C3130)SIN207 + C3,5,€08" G+ C3,5,8in” 6. (A.2)

Note that, in order to make easier the search @frtlots off,(z2) = 0, we introduced the variable
changez = (uco9 — sind)/(cod + usind), which allowed us to write (A.1) as:

2
Cou ol + (G Crn = Chizs — 2CH1ofCrIU” + Corofoinny | (A.3)

(cos@ +usind)*

f,(2) =

A.2. COMPONENTS OR
The determination of the componefg is performed by combination of (17) and (35). la frame
defined by the material symmetry axes, the foll@gp@xpressions are obtained:

= [szzz(cose) +sz(sin0)2](sin0)2 + X
BT s CoA(sinG)* +aB(cosh)’ +(a + B)(cosh)2(sinB)?]  CryyComla-f)

E{f[a(cose)z_(3|n9) 1(aC1,~Cs0) \/7[:3((3039) —(sing) ](:801212_025222)}.

[a(cosh)? +(sind)?]? [ B(cosB)? + (sind)?]?

P (Ciipp + Ciip)(cosh) ?(sing)? n X(Ciizp*+Ciap
1122 = 5 S
Cruly 212[(S|n6) +a B(cosd)* +(a + B)(cosh)?(sind)?] ChuChn(a-B)

Jala(cosd)? - (sin6)?] _ /BLA(cosd)? - (sind)?] | .
[a(cosh)? +(sind)?]?  [B(cosH)? +(sind)?]? |’

P [C, 111(S'n9) +C15212(0036)2](0059)2 + X
%22 s Cou(sing)* +a B(cosd)* +(a+ A)(cosh)2(sin6)?]  CiyConla—f) (A4)
[a(cos8)? = (sinB)*(Ciy, = Ciay) _ [a(cosh)® = (sinB)1(Chy, = BC50) | .
Jala(cosd)? +(sing)?]? JBlB(cosh)? +(sing)?]? ’

b [Cs,,,(c0s8)? = CS ,,(sinG)?]sin26 N Xsin28
2 s Col(sing)* +a B(cosd)* + (@ + B)(co)2(sinf)?] | 25, Coula—f)

I{\/E(HC1122 + C25222)] _ \/7(IBC15122 + C25222 } .

[a(cosh)? +sin®F])?>  [B(cosh)? +(sinb)?]?

P [CS14(sin@)? - C,,(cosH)?]sin28 . X sin29
1 4GS Cond(SiNG)* +a B(cosh)* +(a+ B)(cosd)2(sinB)]  2C5,Cla~F)

\/7(0'C1111 +Cii) \/ﬁ(lgcflll +Cl) |
[a(cosh)? +(sind)?]? [,B’(cose)2 +(sing)?)? |’
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. . 2
[C2114(SINB)* +C355(c080)* — Cio(siNG)? (cOSH)?] +X (Ci1aiC220 = Cli

02 A Clod(5IN6)" +a Bcos8)" +(a + B)(cOH)? (sin6)] 4C5,Co) @ B)
Jala(cosh)? = (sin6)?]  BlB(cosh)?’] |
[a(cosd)? +(sind)?]?  [B(cosH)? +(sind)?])? |’
Plas = (sing)? 2 Corsr [C5230(c089)° —C3124(sin6)?]

4[C3,55(C0OSH)? +C315,(SiNB)*] 4\ CSpay [C3r00(COSH)? +C5y(Sin6)*1? 7

(cosd)® X |Caiz [C??zaz(cose)z_05131(5"19)2] .

Pogzs = - - ;
4[C3,55(c0s8)? +C315(siNB)?] 4| Ciygp [C3r50(COSH) +Cp54(sinG) ]

singcosd X+/C312:C0s SIN26

4[03232((:059)2 + C§131(Sin9)2] 4[C§232(0059)2 + C??:1313irI2 61 .

(A4)



