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Abstract: This paper deals with the theoretical investigation of the thermal convection on a layer of
ferromagnetic fluid heated from below saturating a porous medium subjected to a transverse uniform
magnetic field. For a flat fluid layer contained between two free boundaries, an exact solution is ob-
tained using a linear stability analysis theory and normal mode analysis method. In the case of sta-
tionary convection, the medium permeability and non-buoyancy magnetization both have a destabi-
lizing effect on the system. The critical wave number and the critical magnetic thermal Rayleigh
number for the onset of instability are also determined numerically for sufficiently large values of
buoyancy magnetization parameter M1 and the results are depicted graphically. The principle of the
exchange of stabilities is found to hold true for the ferromagnetic fluid heated from below saturating
a porous medium.

Streszczenie: Teoretycznie badano konwekcję termiczną w warstwie cieczy ferromagnetycznej
ogrzewanej od dołu i wysycającej ośrodek porowaty poddany działaniu poprzecznego, jednorodnego
pola magnetycznego. Otrzymano dokładne rozwiązanie dla płaskiej warstwy cieczy zawartej między
dwoma swobodnymi brzegami, wykorzystując teorię liniowej stateczności i metodę trybu zwykłego.
W przypadku ustalonej konwekcji zarówno przepuszczalność ośrodka, jak i niepowietrzna magnety-
zacja wpływają destabilizująco na układ. Krytyczna liczba falowa i krytyczna magnetyczno-termiczna
liczba Rayleigha na początku utraty stabilności są wyznaczone numerycznie dla wystarczająco du-
żych wartości parametru powietrznej magnetyzacji, a otrzymane wyniki zostały przedstawione gra-
ficznie. Stwierdzono, że zasada wymiany stabilności może być stosowana do cieczy ferromagnetycz-
nej ogrzewanej od spodu i wysycającej ośrodek porowaty.

Резюме: Теоретически испытана термическая конвекция в слое ферромагнитной жидкости,
нагреваемой снизу и насыщающей пористую среду, подверженную действию поперечного,
гомогенного магнитного поля. Используя теорию линейной устойчивости и метод обыкнов-
енного порядка, получено точное решение для плоского слоя жидкости, содержащейся между
двумя произвольными берегами. в случае установленной конвекции как проницаемость среды,
так и воздушная магнетизация дестабилизирующим образом влияет на систему. Критическое
волновое число и критическое магнитно-термическое число Рейлея в начале потери устойчи-
вости численно определены для достаточно больших значений параметра воздушной магнети-
зации, а полученные результаты были представлены графически. Было установлено, что при-
нцип обмена устойчивости можно применять для ферромагнитной жидкости нагреваемого
снизу и насыщающей пористую среду.

                                                     
* To whom correspondence should be addressed.
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1. INTRODUCTION

In the last millennium, the investigation on ferrofluids attracted attention of re-
searchers because of their wider applications in area such as instrumentation, lubrica-
tion, vacuum technology, vibration damping, metals recovery, acoustics; their com-
mercial usage includes vacuum feed-throughs for semiconductor manufacturing and
related uses, pressure seals for compressors and blowers, engineering, medicine,
chemical reactor and high-speed silent printers, etc. During the last half century, re-
search on magnetic liquids has been very productive in many fields. The major per-
spectives are connected with a massive shocks and oscillation damping (earthquake,
airbags), but the contemporary application concerned mostly seals and cooling of
loudspeakers. Big efforts have been made to synthesize stable suspensions of mag-
netic particles with different performances in magnetism, fluid mechanics or physical
chemistry. Many research workers have paid their attention towards the study of the
applications of ferrofluid; see, for example, the investigations of MOSKOWITZ [1],
HATHAWAY [2], BARCLAY [3], MORIMOTO et al. [4] and BAILEY [5]. Traditional fer-
rofluid products such as multistage rotary seals, exclusion seals, inertia dampers and
loudspeakers allow now a well-established industry to be developed. Additionally, in
the last few years, a number of new applications have emerged such as ferrofluid
steppers, gauges and sensors (RAJ et al. [6]).

The monograph by ROSENWEIG [7] gives a detailed introduction to ferrohydrody-
namics. FINLAYSON [8] has studied the convective instability of ferromagnetic fluids,
whereas thermoconvective stability of ferrofluids without considering buoyancy ef-
fects has been investigated by LALAS and CARMI [9]. SCHWAB et al. [10] have inves-
tigated experimentally the Finlayson’s problem in the case of a strong magnetic field
and detected the onset of convection by plotting the Nusselt number versus the Ray-
leigh number. Then, the critical Rayleigh number corresponds to a discontinuity in the
slop. Later, STILES and KAGAN [11] have examined the experimental problem re-
ported by SCHWAB et al. [10] and generalized the Finlayson’s model assuming that
under a strong magnetic field, the rotational viscosity augments the shear viscosity.
The theory of thermal convection of a non-magnetic fluid layer heated from below
under varying assumptions of hydromagnetics has been treated in detail by
CHANDRASEKHAR [12]. The Bénard convection in ferromagnetic fluids has been con-
sidered by many authors (RUDRAIAH and SHEKAR [13], ANISS et al. [14],
SIDDHESHWAR [15], QIN and KALONI [16], SIDDHESHWAR [17], ZEBIB [18], SOUHAR
et al. [19], ANISS et al. [20], SIDDHESHWAR and ABRAHAM [21]). More recently,
SUNIL et al. [22]–[24] have studied the effect of dust particles and rotation on thermal
convection in a ferromagnetic fluid. In all the above studies, the medium has been
considered to be non-porous. A good formalism of the basic equations of a layer of
fluid heated from below in porous medium has been provided by JOSEPH [25].
A comprehensive review of the literature concerning thermal convection in a fluid-
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saturated porous medium may be found in the book by NIELD and BEJAN [26] and
references therein.

The thermoconvective instability in a ferromagnetic fluid saturating a porous me-
dium of very large permeability subjected to a vertical magnetic field has been dis-
cussed by VAIDYANATHAN et al. [27] who using the Brinkman model have indicated
that only stationary convection can exist. A porous medium of very low permeability
allows us to use the Darcy’s model. This is because for a medium of very large stable
particle suspension, the permeability tends to be small justifying the use of Darcy’s
model. This is because in a medium of very large stable particle suspension, the per-
meability tends to be small justifying the use of Darcy’s model. This is because the
viscous drag force is neglibility small in comparison with the Darcy’s resistance due
to the large particle suspension. Darcy’s law governs the flow of ferromagnetic fluid
through an isotropic and homogeneous porous medium. However, to be mathemati-
cally compatible and physically consistent with Navier–Stokes equations, BRINKMAN

[28], [29] heuristically proposed the introduction of the term (μ/ε)∇2q (now known as
the Brinkman term) in addition to the Darcian term q)/( 1kμ− . But the main effect is
through the Darcian term; the Brinkman term contributes a very little effect for flow
through a porous medium. Therefore, Darcy’s law is proposed heuristically to govern
the flow of this ferromagnetic fluid saturating a porous medium.

The results of the paper, therefore, might become potentially interesting in metallurgy,
semiconductor industry and geophysics. A layer of ferromagnetic fluid heated from below
saturating a porous medium has relevance and importance in chemical technology, geo-
physics and bio-mechanics. The present paper, therefore, deals with the thermal convection
in a ferromagnetic fluid in homogeneous and isotropic porous medium of very low perme-
ability, allowing the use of Darcy’s model, subjected to a vertical magnetic field. This
problem, to the best of our knowledge, has not been investigated yet and we believe that
the present study can serve as a theoretical support for an experimental investigation.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

Here we consider an infinite, horizontal layer of the thickness d of an electrically non-
conducting incompressible ferromagnetic fluid in porous medium, heated from below
and that a uniform temperature gradient

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

dz
dTβ

is maintained (see figure 1). A uniform magnetic field H0 acts along the vertical di-
rection which is taken as the z-axis. The temperatures at the bottom and top surfaces

dz 5.0m=  are T0 and T1, respectively. Both the boundaries are taken to be free and



SUNIL et al.6

perfect conductors of heat. The gravity field g = (0, 0, –g) pervades the system. This
ferromagnetic fluid layer is assumed to be flowing through an isotropic and homoge-
neous porous medium of the porosity ε and the medium permeability k1, where the
porosity is defined by
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Fig. 1. Geometrical configuration

For very fluffy foam materials, ε is nearly one, and in beds of packed spheres ε is
in the range of 0.25–0.50.

The mathematical equations governing the motion of a ferromagnetic fluid satu-
rating a porous medium for the above model are as follows:

• The continuity equation for an incompressible fluid is
0. =∇q . (1)

• The momentum equation for Darcy’s model is

qHBgq
1
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• The temperature equation for an incompressible ferromagnetic fluid is
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• The density equation of state is

)](1[0 aTT −−= αρρ ,  (4)

where ρ, ρ0, q, t, p, μ, μ0, H, B, CV,H, T, M, K1, α and Φ are the fluid density, refer-
ence density, Darcian (filter) velocity, time, pressure, dynamic viscosity (constant),
permeability of free space, magnetic field intensity, magnetic induction, heat capacity
at constant volume and magnetic field, temperature, magnetization, thermal conduc-
tivity, thermal expansion coefficient and viscous dissipation factor containing the
second-order terms in velocity, respectively. Φ being second order small may be ne-
glected. Ta is the average temperature given by

2
)( 10 TTTa

+
= ,

where T0 and T1 are the constant average temperatures of the lower and upper surfaces
of the layer. The partial derivatives of M are material properties, which can be evaluated
once the magnetic equation of state, such as (8), is known. Two additional complications
are assumed negligible in equation (2): we assume that the viscosity is isotropic and
independent of magnetic field intensity. We also employ the Boussinesq approximation
by allowing the density to change only in the gravitational body force term.

Maxwell’s equations, simplified for a non-conducting fluid with no displacement
currents, become

0. =∇B ,   0H =×∇ . (5a, b)

In the Chu formulation of electrodynamics (PENFIELD & HAUS [30]), the magnetic
field, magnetization and the magnetic induction are related by

)(0 MHB += μ . (6)

We assume that the magnetization is aligned with the magnetic field, but allows
a dependence on the magnitude of the magnetic field as well as the temperature

) ,( THM
H
HM = . (7)

The magnetic equation of state is linearized about the magnetic field H0 and an av-
erage temperature Ta to become

)()( 200 aTTKHHMM −−−+= χ , (8)

where: H0 is the uniform magnetic field intensity of the fluid layer when placed in an
external magnetic field intensity kH ˆext

0H= , 
aTHHM  ,0

)/( ∂∂=χ  is the magnetic sus-
ceptibility, 

aTHTMK ,2 0
)/( ∂∂−= is the pyromagnetic coefficient and || H=H ,

|| M=M , ),( 00 aTHMM =  and k̂  is unit vector in the z-direction.
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The basic state is assumed to be quiescent state and is given by

0qq == b ,  )(zpp b= ,  )(zbρρ = ,  ab TzzTT +−== β)( ,  
d

TT 10 −=β ,

(9)
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where the subscript b denotes the basic state.

3. THE PERTURBATION EQUATIONS

We shall analyze the stability of the basic state by introducing the following per-
turbations:

qqq ′+= b , pzpp b δ+= )( ,  θ+= )(zTT b  , HHH ′+= )(zb , MMM ′+= )(zb , (10)

where MHq ′′′′=′=′   and  )H ,H ,(  ,  ,  , ),,( 321Hpwvu θδ  are perturbations in velocity,
pressure, temperature, magnetic field intensity and magnetization, respectively. These
perturbations are assumed to be small and then the linearized perturbation equations
become
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where 020,02020,01   ,)1( HKCCHKCCC HVSSHV μρρεμρεερρ +=+−+= ,
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where we have assumed 02 )1()( HTTK ab χ+<<− . Thus the analysis is restricted to
physical situation in which the magnetization induced by temperature variation is
small compared to that induced by the external magnetic field. Equation (5b) means
we can write Φ′∇=′H , where Φ′  is the perturbed magnetic potential.

Eliminating u, v, δp from equations (12)–(14), using (11), we obtain
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From (16), we have
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Analyzing the disturbances in normal modes, we assume that the perturbation
quantities are of the form

( ) )(exp)],( ),,( ),,([ , , ykxkitzΦtzΘtzWΦw yx +=′θ , (19)

where yx kk ,  are the wave numbers along the x- and y-directions, respectively, and
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Equations (17), (15) and (18), using equation (19), become
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Equations (20)–(22) give the following dimensionless equations
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where the following non-dimensional parameters are introduced:

2
*

d
tt ν

= ,  
ν

WdW =* ,  Φ
dCK

aRKΦ 2
22

2/1
1* )1(
βνρ

χ+
= ,  

1

2
4

K
CdgR

ν
ραβ

= ,  Θ
dC

aRKT
βνρ 2

2/1
1* = ,

kda = ,   
d
zz =* ,   *z

D
∂
∂

= ,   2
1*

1 d
kk = ,   2

1
C

K
Pr ρν
= ,   1

1
C

K
Pr ρν
=′ ,

g
KM

0

2
20

1 )1( αρχ
βμ

+
= ,   

2

2
200

2 )1( C
KTM
ρχ

μ
+

= ,   
)1(

1
0

0

3 χ+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
H
M

M .

4. EXACT SOLUTION FOR FREE BOUNDARIES

Here the simplest boundary conditions chosen, namely free-free, no-spin, isothermal
with infinite magnetic susceptibility χ in the perturbed field, keep the problem analyti-
cally tractable and serve the purpose of providing a qualitative insight into the problem.
The case of two free boundaries is of little physical interest, but it is mathematically
important because one can derive an exact solution, whose properties guide our analysis.
Thus the exact solution of the system (23)–(25) subject to the boundary conditions

0***2* ==== DΦTWDW    at   
2
1

±=z (26)

is written in the form
* t
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⎠
⎞

⎜
⎝
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where A1, B1, C1 are constants and σ is the growth rate which is, in  general, a com-
plex constant.

Substituting equations (27) in equations (23)–(25) and dropping asterisks for con-
venience, we arrive at the following equations
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For existence of non-trivial solutions of the above equations, the determinant of
the coefficients of A1, B1, C1 in equations (28)–(30) must vanish. This determinant on
simplification yields

02 =++ XiWV ii σσ , (31)

where:
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5. DISCUSSION OF RESULTS

5.1. THE CASE OF STATIONARY CONVECTION

When the instability sets in as stationary convection in the case M2 ≅ 0, the mar-
ginal state will be characterized by 0=iσ  (CHANDRASEKHAR [12]), then the Ray-
leigh number is given by
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, (32)
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which expresses the modified Rayleigh number R1 as a function of the dimensionless
wave number x, buoyancy magnetization parameter M1, non-buoyancy magnetization
parameter M3 and medium permeability parameter lP  (the Darcy number).

The classical result in respect of Newtonian fluids can be obtained as the limiting
case of the present study.

Setting M3 = 0 in equation (32), we get

lxP
xR

2

1
)1( +

= , (33)

the classical Rayleigh–Bénard result in porous medium for the Newtonian fluid case.
To investigate the effects of medium permeability and non-buoyancy magnetization,

we examine the behaviour of dR1/dPl and dR1/dM3 analytically. Equation (32) yields
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This shows that, for a stationary convection, the medium permeability and non-
buoyancy magnetization are found to have destabilizing effect on the system.

The critical Rayleigh number for the onset of instability is determined by the con-
dition dR1/dx = 0. When M1 = 0, then from equation (32), we have

222 π41  with   π
lP

Ra cc == .

For M1 sufficiently large, we obtain the results for the magnetic mechanism oper-
ating in porous medium

3
2

3
2

11
)1()1(

MxP
xMxMRN

l

++
== ,  (36)

where N is the magnetic thermal Rayleigh number.
The critical magnetic Rayleigh number for the onset of instability is determined by

the condition dN/dx = 0; we get

3
2

3
2 )1()1(

MxP
MxxN

c

cc
c

l

++
= ,   where   

3

3
2
33

2
8

M
MMM

xc
++

= . (37)

The critical wave-number and critical magnetic number Nc depend on the non-buoyancy
magnetization parameter M3 and medium permeability parameter P , taking the values
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222 π
4

271  , π2
lP

Na cc ==    for   M3 = 1

and

222 π41  , π
lP

Na cc ==    for   ∞→3M ,

and intermediate values for intermediate M3.
The dispersion relation (32) is analyzed numerically. In figure 2, R1 is plotted

against wave number x for M1 = 1000, M3 = 1; P  = 0.001, 0.002, 0.003 and 0.004. In
figure 3, R1 is plotted against wave number x for M1 = 1000, P  = 0.001; M3 = 1, 3, 5, 7.
It is clear that the medium permeability and non-buoyancy magnetization have desta-
bilizing effect as the Rayleigh number decreases with the increase in medium perme-
ability parameter and non-buoyancy magnetization parameter. In figure 4, the critical
magnetic thermal Rayleigh number Nc is plotted against the non-buoyancy magnetiza-
tion M3 for P  = 0.001, 0.002, 0.003 and 0.004. This shows that as the non-buoyancy
magnetization parameter M3 and the Darcy number P  increase, the critical magnetic
Rayleigh number Nc decreases. Therefore, lower values of Nc are needed for the onset
of convection with an increase in M3 and P , hence justifying the destabilizing effect
of non-buoyancy magnetization M3 and medium permeability P  (table).
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Fig. 2. The variation of the Rayleigh number (R1) with the wave number (x) for
M1 = 1000, M3 = 1; P  = 0.001 for curve 1, P  = 0.002 for curve 2,

P  = 0.003 for curve 3 and P  = 0.004 for curve 4
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Fig. 3. The variation of the Rayleigh number (R1) with the wave number (x) for M1 = 1000,
P  = 0.001; M3 = 1 for curve 1, M3 = 3 for curve 2, M3 = 5 for curve 3 and M3 = 7 for curve 4
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Fig. 4. The variation of the critical magnetic Rayleigh number (Nc) with
non-buoyancy magnetization (M3) for P  = 0.001 for curve 1, P  = 0.002 for curve 2,

P  = 0.003 for curve 3 and P  = 0.004 for curve 4

Suggestion from FINLAYSON [8] has also been taken for a variation of these
parametric values. In the present analysis, the range of values pertaining to ferric
oxide, kerosene and other organic carriers are chosen. With the same ferric oxide,
the different carriers like alcohol, hydrocarbon, ester, halocarbon, silicon could be
chosen. Depending on this, the parametric values of ferromagnetic fluid are found
to vary within these limits. For such fluids, the typical values of M2 are +10–6 and

R1

x

M3

Nc
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so is assumed to have a negligible value and hence it is taken to be zero
(FINLAYSON [8]). The non-buoyancy magnetization parameter M3 measures the
departure of linearity in the magnetic equation of state and the values from one

)( 00 HM χ=  to higher values are possible for the usual equation of state. Thus M3 is
varied from 1 to 25.

T a b l e

Critical magnetic thermal Rayleigh numbers and wave numbers of the unstable modes
at marginal stability for the onset of stationary convection

M3 xc
(P  = 0.001)

Nc

(P  = 0.002)
Nc

(P  = 0.003)
Nc

(P  = 0.004)
Nc

1 2 6750 3375 2250 1687.5
3 1.457427 5091.258 2545.629 1697.086 1272.814
5 1.306226 4695.234 2347.617 1565.078 1173.808
7 1.231925 4512.576 2256.288 1504.192 1128.144
9 1.187184 4406.644 2203.322 1468.881 1101.661

11 1.157129 4337.271 2168.635 1445.757 1084.318
13 1.135489 4288.24 2144.12 1429.413 1072.06
15 1.119139 4251.717 2125.858 1417.239 1062.929
17 1.106339 4223.443 2111.721 1407.814 1055.861

5.2. PRINCIPLE OF EXCHANGE OF STABILITIES

Here we examine the possibility of the effect of oscillatory modes, if any, on sta-
bility problem due to the presence of magnetization parameters and medium perme-
ability. Equating the imaginary parts of equation (31), we obtain

0})){(1(1)1()1(1
323

2 =⎥
⎦

⎤
⎢
⎣

⎡
′+−′++++ MPxMPPx

P
xMx rrri ε

ε
σ

l

. (38)

Here the quantity inside the brackets has a positive definite form because the typi-
cal values of M2 are +10–6 (FINLAYSON, [8]). Hence

0=iσ . (39)

This shows that whenever 0 that  implies  0 == ir σσ , then the stationary (cellu-
lar) pattern of flow prevails upon the onset of instability. In other words, the principle
of exchange of stabilities is valid for the ferromagnetic fluid heated from below satu-
rating a porous medium.
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6. CONCLUSIONS

In this paper, we studied the thermal instability of a ferromagnetic fluid saturating
a porous medium in the presence of uniform vertical magnetic field. We have investi-
gated the effects of medium permeability and non-buoyancy magnetization on the
onset of convection. The principal conclusions from the analysis of this paper are as
follows:

(i) For stationary convection, the medium permeability and non-buoyancy mag-
netization are found to have a destabilizing effect on the system which has been dem-
onstrated both analytically and numerically. It is clear from figures 2 and 3 that the
medium permeability and non-buoyancy magnetization have a destabilizing effect as
the Rayleigh number decreases with the increase in the Darcy number and non-
buoyancy magnetization parameter.

(ii) The critical wave numbers and critical magnetic thermal Rayleigh numbers for
the onset of instability are also determined numerically for sufficiently large values of
buoyancy magnetization M1 and the results are depicted graphically. For sufficiently
large values of buoyancy magnetization M1, figure 4 and table show that as non-
buoyancy magnetization parameter M3 and Darcy number P  increase, the critical
magnetic Rayleigh number Nc decreases. Therefore, lower values of Nc are needed for
the onset of convection with an increase in M3 and P , hence justifying the destabiliz-
ing effect of non-buoyancy magnetization M3 and medium permeability P . In order to
investigate our results, we must review the results and their physical explanations. It
is well known that the when fluid layer is assumed to be flowing through an isotropic
and homogeneous porous medium, then the medium permeability has a destabilizing
effect. As medium permeability increases, the void space increases and as a result of
this, the flow quantities perpendicular to the planes will clearly be increased. Thus an
increase in heat transfer is responsible for the early onset of convection. Thus in-
creasing P  leads to a decrease in Nc. The increase in non-buoyancy magnetization as
well as in medium permeability is found to cause large destabilization, because me-
dium permeability, magnetic and thermal mechanisms favour destabilization.

(iii) The principle of exchange of stabilities is found to hold true for the ferromag-
netic fluid saturating a porous medium heated from below.

Thus from the above analysis, we conclude that the medium permeability has a pro-
found influence on the onset of convection. It is hoped that the present work will serve
as a vehicle for understanding more complex problems investigated in the present paper.
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