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Abstract: In this paper, the dynamic response of a beam to a random train of moving forces is con-
sidered. An analytical technique is developed to determine the spectral density function of the beam’s
response. The random train of moving forces forms a filtered Poisson process. In order to obtain sim-
ple algebraic relations for the spectral denisity function of the beam’s response, the dynamic influ-
ence function has been introduced. As an example the spectral density functions of a bridge modelled
as a simply supported beam are determined.

Streszczenie: Praca omawia zagadnienie drgan belki obciazonej losowa seria ruchomych sit, tworza-
cych proces Poissona. W rozwazaniach wykorzystano analiz¢ widmowa odpowiedzi uktadu. Aby
uzyska¢ proste algebraiczne zwiazki, okre$lajace funkcje gestosci widmowej drgan belki, wprowa-
dzono dynamiczna funkcj¢ wptywu. W przyktadzie numerycznym przedstawiono funkcje gestosci
widmowej konstrukcji mostowej, ktorej modelem jest belka swobodnie podparta.

Pesiome: B Hacroseii pabote o0Cyx/ieH BOIpoc KojeOaHuii GalloK, 3arpyKeHHbBIX CITyJaiiHOH cepueit
HNOABMXXHBIX CHJI, co3Jlaromux nporecc [lyaccona. B paccyxaeHHsSX HCIIONB30BaH CHEKTPAIBHBIN
aHaNM3 OTBeTa CHUCTEMBL. I MOJydeHWs MPOCTHIX anre0pandeckux CBsi3ed, MACHTHOUIMPYIOMNX
(YHKIMIO CHEKTPAIBHOH IUIOTHOCTH KoyeOaHWil OajoK BBeIeHAa IMHAMHYHAS (YHKIUS BIIHSHHS.
B uncrneHHOM mpHMepe NpeacTaBleHb! (YHKIUH IUIOTHOCTH CHEKTPAIbHOH KOHCTPYKIMM MOCTa,
KOTOPOI MOZIENBIO SBJISETCS] CBOOOIHO TOAKPEIUICHHAs OalKa.

1. INTRODUCTION

The problem of vibration of engineering structures arising from the passage of
a moving load is of great importance in dynamics of structures. Vibration of that kind,
occurring mainly in bridges, has been the subject of studies for many years and there
is an extensive literature, e.g., see FRYBA [1], on the subject. TUNG [2]-[4] was
probably the first to publish papers on the stochastic vibrations and reliability of
a bridge beam subjected to a random train of point forces. In the papers by SNIADY
and co-authors [5]-[9], the analysis of the beam’s vibrations, the estimation of the
beam’s reliability and fatigue modelled as the first crossing problem have been pre-
sented. The vibrations of a beam under various boundary conditions due to a train of
random forces moving along the beam at a constant speed and in the same direction
have been analysed by ZIBDEH and RACKWITZ [10], [11]. The problem of vibration of
a suspension bridge under a random train of moving load has been discussed by
BRYJA and SNIADY [12]-[14]. In all these aforementioned papers, the random train of
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moving forces has been assumed to be a Poissonian moving load process which is an
analogue of the Poissonian pulse process, see also LIN [15], ROBERTS [16], [17],
SNIADY [18], MAZUR-SNIADY and SNIADY [19], GEADYSZ and SNIADY [20]. A dif-
ferent approach to this problem has been shown by PAOLA and RICCARDI [21],
RICCARDI [22].

The loading of highway bridges is characterized by the occurrence of millions of
repetitive random load events. This type of load causes material fatigue and leads to
an ultimate damage of structure. Narrow-band stochastic vibration, where one fre-
quency is dominating, is one of the factors which accelerate fatigue in bridge struc-
tures. In the problem of beam’s vibrations under a random train of moving forces, we
want to determine the velocity of these forces for which the response of the beam is
a narrow-band stochastic process. The paper presents the spectral analysis of the
beam’s vibration under a random train of moving forces which forms a filtered Pois-
son process.

The introduction of the dynamic influence function (15) allows the authors to ob-
tain the spectral density function of the normal mode response (19). The expressions
have been used to analyse the influence of the velocity of the moving forces on the
spectral density function of the simply supported beam with determinate parameters:
length, mass, damping coefficient and flexural rigidity.

2. STATEMENT OF THE PROBLEM AND GENERAL SOLUTION

Let us consider vibrations of a beam of the finite length / which is a linear, elastic
structure. Vibrations are caused by a train of forces moving in the same direction, all
at equal, constant speed v (figure 1). The forces arrive at the beam at random times #;
which constitute a Poisson process N(f) with the parameter A. The Poisson process
N(?) and its increment dN(¢) give the number of forces arriving in the time intervals (0,
?) and (¢, ¢ + dt), respectively.

Fig. 1. Load pattern of a beam

Vibrations of the beam due to this train of forces are described by the following
equation of motion:
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N(1)
EWY (x,8) + ew (x, 1) + miv (x,1) = ZAké'[x—v(t -], (D

k=1
where EI denotes the flexural stiffness of the beam, ¢ and m are the damping coeffi-
cient and the mass per-unit-length of the beam, respectively, &( . ) stands for the Dirac
delta function, Roman numeral superscripts denote differentiation with respect to the
spatial co-ordinate and superscript dots denote differentiation with respect to time. In
the loading process, the amplitudes A4, are random variables, which are mutually inde-

pendent and also independent of the times #; and their expected values E[4,]= E[4],

E[A}]= E[A*] are known, where the symbol E[e] denotes the expected value of the

quantity in the brackets.
It is assumed that the deflection w(x, ¢) of the beam is obtained as the sum of the
modal components:

w (0= y,(OW,(x). )

The eigenfunctions satisfy the equation
wNx) =AW, (x)=0  (n=1,2,..) (3)

and appropriate boundary conditions. The symbol 4, (n=1,2,...) denotes the n-th

eigenvalue.
After inserting expression (2) into equation (1) one obtains the set of uncoupled
equations:

N(z)
3,(0)+2a 3, (0 + 019, (1) =%ZAkWn[va—rk)]{HT(z—rk)—HT(r—tk —éﬂ o

n k=1

where:
1 fore, <t<t +l
! A
EJ
2a=£, a)flef,—, yfz‘[an(x)dx, HT(t—tk)z vl
" " 0 0fore<t,t>t, +—
v

and T = ! is the time of force passage along the beam.
v

The steady-state solution of equation (4) can be obtained in the form of the Stielt-
jes stochastic integral with respect to the Poisson process N(¢) as [5], [15]:
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where: 7= min[t, T+ i} , B (t—&)=Q " exp[-a(t—&)]sinQ,(t— &) is the impulse
v

response function and Q7 =@’ —a” is the damped natural frequency.

After taking into account that the increments dN(¢) of the Poisson process satisfy
relations

E[dN*(t)]=Adt for k=1,2,... (6)
and
E[dN(1,) dN(t,)]= 22dt, dt, ~ for t, #1,, (7)

the expected value and covariance function of the normal mode y,(¢#) can be obtained
from the expressions

tn
E 015 T | [, EM, 16~ d ®)
and
E[Az]ﬂ, t M
Cr (ho12) == 5= [ [[m@=-&om@-5)
W, [UE ~ oW, [, - D) dEdE,dr, ©)

where ¢ =min(¢,,?,).
Now, our aim is to find the expression for the spectral density function @, , (@)
using the covariance function given by equation (9). In order to present the method of

solving the problem, we shall consider the stationary vibrations of a system with one
degree of freedom described by an equation similar to (4), namely

ﬁ(t)+2ay'(t)+w§y(t)=%X(t), (10)

where the excitation process X() is a weakly stationary stochastic process.
For a weakly stationary stochastic processes X(¢) the relationships between the co-
variance function C,, (¢) and the spectral density function @,, (®) have well-known

forms [15], [23]:
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Cyy ()= Tqbe(a)) e’ do (11)
and
1 I —iot
@H(w)zgjcﬂ(z)e dt (12)
where i=+/-1.
The equation
Dy, (0) = H(0) Dy (0)H () (13)

relates the input X(¢) and the output y(¢) spectral density functions through an alge-
braic equation (see [15], [23]). The function H(w) is the frequency response function

and has the form

1

m(a)g -0’ +2iaw)’

H(w) = (14)

and the superscript * indicates the complex conjugate.

Notice that in the case of equation (4) it is not possible to find the spectral density
function in a simple algebraic form analogous to (13) because the response of the
system is a filtered Poisson process and the covariance function (9) has a more com-
plex form than when the dynamic system is excitated by a weakly stationary stochas-
tic process. To overcome this difficulty let us introduce the dynamic influence func-
tion G, (¢) which is the beam’s normal mode response at the time ¢ to the force 4, =1

moving at the velocity v. The function G, (¢) can be obtained from the integral:

lyz jhn(r—g)Wn[v(g—r)] dé  for t—%ﬁ r<t,

G (t-1)=
m

G, (t—-7)= i (15)
Ivhn(t—é)VK,[v(f—r)] dé for0<r<i-Land t>1.
v v

1

2

nor

GP(t-1)=
m

The function G'"(¢—7) is the normal mode response at the time ¢ to the moving

[
Telt——,1
v

force A; = 1, the arrival time is
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and the force is acting on the beam (force vibration), whereas the function G,sz) (t—1)
is the normal mode response to the force that left the beam, i.e.,

re(O,t—ij
v

(free vibration). Now, using the dynamic influence function, the covariance function
for steady-state normal mode response has the form:

t
C,,,, (6:1) = ELL1 2 G, (4 =7) G, (, =) d7

= E[4°12[G,(&) G, (6, 1, +&) d¢
0
=C,  (t,—t). (16)

YnIn

As can be seen from equation (16) normal mode response y,(¢) in the case under
consideration is a weakly stationary stochastic process. The expression (16) can be
presented in a double integral form:

Lo b

C,, O=EA12 [ [G,(4-£)G,(-&) 6 -&) dg d&

—00 —00

= ELC1A[[ G, () G, () (2 +m, =my) iy, (17)
00

where t=1¢, —,.
Relation (17) can be used to find the spectral density function @, | (w) of the
normal mode response y,(f). Taking into account equation (17) and the relationships

between the covariance function and the spectral density function ((11) and (12)) we
obtain

1 T —iw
P, (@)= [c,,, e d

00 00 0

1 —iw
= LAV [ [[G,0) Gy(n) 8+ = m) €'y iy
T -0 0 0

= LE[Az] A J- G, (m)e”" "™ dn, J- G, (1,)e" "™ dn, je_imt5(t)dt- (18)
2r 0 7

—00
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Expression (18) can be presented in a short form

_E[4*1A
Bl T

?,,, (@) J (@) ], (o), (19)

where:

J (@)= ]G, () e dn
0

!
=[Gy e dn+ [ G2 e dn, (20)
0 1

The function J, (@) represents the Fourier transform of the dynamic influence
function G,(¢). Equation (19) may be regarded as an analogue of (13) for a random

train of moving forces and when the response of the linear system is a filtered Poisson
process.

3. PARTICURAL SOLUTION AND NUMERICAL ANALYSIS

Expressions (15) and (19) have been used to analyse the influence of the velocity
of the moving forces v on the spectral density function of a simply supported beam.
The analysis has been done for the first eigenfrequency of the beam; i.e., n =
1 (w, =) . For a simply supported beam (figure 1) the eigenvalue A,, the eigenfre-

no

quency and the eigenfunction are equal to:

nrw nrw : El nITx
Ay=—, @,=|— 1/—, W, (x)=sin . 21
[ / m /

It has been assumed that the parameters of the beam are as follows: the span / = 20 m,
the damping ratio &= 0.02, where a =0.5c¢/m =¢w, and the first natural frequency

is in the range @, =2-10 Hz.The velocities of the moving forces are given by formu-
lae

[ [
Ve—o =—,
2ra al;

where a > 0 and its variability is assumed in the range of 0.2 < a < 2.0.
The numerical analysis has been carried out in a real range of velocity values; i.e.,
the parameter a = 0.2 gives us the velocity of moving forces v = 300 km/h, for this
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reason we do not use the small value for the parameter a. The constant C in all figures
takes the shape of

2
c-EA A

ml®
Figures 2, 3, 4 and 5 show the graphs of the spectral density function @, , (@)
for selected values @, and fixed value of the parameter @ = 1. From these figures one
can see that the beam response is a narrow-band process with a clear peak for v = o, .

The velocity of the moving forces increases together with the growth of @, which
allows us to estimate the value of the velocity v dangerous for the structure.
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Fig. 2. The spectral density function for @, =2 Hz (v =23 km/h)
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Fig. 3. The spectral density function for @, = 5 Hz (v = 57 km/h)
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Fig. 4. The spectral density function for @, = 8 Hz (v =92 km/h)

Figures 6, 7, 8 and 9 show the graphs of the spectral density function for
®, =o,,, =5.3 Hz. This value was calculated for the simply supported steel beam.

real
The following assumptions were made: the length of the beam / = 20 m, the moment
of inertia / is equal to 0.0007 m*, the mass-per-unit-length m is equal to 3000 kg/m
and Young’s modulus E =200 GPa (2 - 10° kN/m?). Also these graphs correspond to
the narrow-band process with sharp peaks for @ = @, . In the case of the parameter a =
2 (see figure 6), one can see the clear influence of the quasi-static action of the beam
on the moving forces. Comparing the maximum values of peaks in figures 5, 6, 7 and
8 we can notice that: the values of spectral density function are tenfold smaller for a =
2 than for a = 0.5 if the time of the forces passage along the beam is equal to the half
of the time of eigenvibration.
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Fig. 5. The spectral density function for @, = 10 Hz (v = 115 km/h)



54 M. GLADYSZ, P. SNIADY

Cdy v, lw)
F )
1.2-10E-7

1-10E-7
8-10E-6

6-10E-6

4-10E-6

2-10E-6
w[ Hz]

25 5 7.5 10 12.5 15

Fig. 6. The spectral density function for a =2 (v =30 km/h)
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Fig. 7. The spectral density function for a =1 (v =61 km/h)

Chdy v (w)
i

12-10E-4

1-10E4
8-10E-5
6-10E-5

4-10E-5

2-10E-5
J L (l,‘LHZ]

25 5 75 10 125 15

Fig. 8. The spectral density function for a = 0.75 (v = 81 km/h)
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Fig. 9. The spectral density function for a = 0.5 (v =121 km/h)

4. CONCLUSION

The paper presents the spectral analysis of the beam’s vibration under a random
train of moving forces which forms a filtered Poisson process. In this case, it is im-
possible to obtain a solution for the spectral density function for the system response
in the classical way like for the excitation by a weakly stationary stochastic process.
To overcome these difficulties the dynamic moving influence function has been intro-
duced, which allows one to obtain the spectral density function of the normal mode
response of the beam in a short expression (19). The spectral analysis allows one to
determine the velocity of the moving forces for which the beam response is a narrow-
band stochastic process. This is important from a practical point of view because the
narrow-band stochastic response, where one frequency is dominating, is one of the
factors which accelerate fatigue in the bridge structures.
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