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Abstract: The recent elastoplastic pressuremeter theory of MONNET and KHLIF [12] for the granular soil has
been used in several civil engineering constructions. The finite element method allows nowadays the validity
of this theory to be checked. In the first part of the paper, we briefly present the interpretation of the pres-
suremeter test in granular soil and a theoretical expression of the limit pressure. In the second part, we pres-
ent the analysis of the theoretical limit pressure versus the result of the Mohr–Coulomb non-standard model
used by the Plaxis finite element program. As the theory shows that the limit pressure depends on four pa-
rameters, we apply a variation of one of these parameters, the others remaining unchanged, and we study the
resulting variation of the limit pressure. The theoretical evolution of the limit pressure as a function of each
parameter shows a fine agreement with the numerical results.

Streszczenie: Opracowaną przez MONNETA i KHLIFA [12] sprężystoplastyczną teorię testu presjome-
trycznego dla ośrodków sypkich wykorzystuje się w zagadnieniach inżynierii budowlanej. Potwier-
dzeniem teorii są rozwiązania, które umożliwia metoda elementów skończonych. W pierwszej części
pracy przedstawiono zastosowanie presjometru dla ośrodków sypkich oraz teoretyczny wzór naprę-
żenia granicznego. W drugiej części analizowano teoretyczne naprężenia graniczne, porównując je
z wynikami niestandardowego modelu Mohra–Coulomba za pomocą programu metody elementów
skończonych Plaxis. Jak wykazuje teoria, naprężenie graniczne zależy od czterech parametrów. Za-
stosowano zmianę jednego z parametrów i, zakładając niezmienność pozostałych, analizowano zmia-
ny naprężeń granicznych. Otrzymane teoretyczne zmiany naprężeń granicznych jako funkcje każdego
z parametrów wykazały dobrą zgodność z rozwiązaniem numerycznym.

Резюме: Разработанная Монэ и Клифом [12] упруго-пластическая теория прессиометрическо-
го теста для сыпучих сред используется в вопросах строительного инженерного дела. Подт-
верждением теории являются решения, которые предоставляет метод конечных элементов.
В первой части работы представлено применение прессиометра для сыпучих сред, а также
теоретическое уравнение предельного напряжения. Во второй части проведен анализ теорети-
чeских предельных напряжений, сравнивая их с результатами стандартной модели Кулона–
Мора с помощью программы метода конченных элементов Плаксис. Как показывает теория,
предельное напряжение зависит от четырех параметров. Применена замена одного из пара-
метров и, предполагая неизменчивость остальных, анализировли изменение предельных напр-
яжений. Полученные теоретические изменения предельных напряжений как функции каждого
из параметров показали хорошую согласованность с численным решением.

1. INTRODUCTION

The pressuremeter is a well-known apparatus (MÉNARD [11]), widely used nowa-
days for foundation engineering (GAMBIN [9], AMAR et al. [1], CLARKE [2]). Its use,



J. MONNET70

however, often is based on a set of empirical rules (DTU 13.12.1988 [4], French
Standard NF P 94-110 2000 [8], French Standard P 94-250-1 [7]).

A pressuremeter test may be considered as an in situ shearing test because the in-
strument measures both deformability and shear resistance of soil and the test is per-
formed in situ, in any soil, without sampling. This allows us to avoid the problems of
grain size distribution, change in consolidation or remoulding, often encountered in
the samples used for laboratory testing.

2. HYPOTHESIS

Following Baguelin et al. (1978), we assume a drained test with an elastic behaviour at
low level of shear with two elastic parameters, the Young modulus E and the Poisson ratio
ν and a non-standard elastoplasticity with a dilantancy angle (eq. (1)) which is:

Ψ = Φ ′ – Φμ , (1)

0.8Ψ = Φ ′ – Φcv. (2)

The relation between dilatancy and friction angle was also investigated by Bolton
(1986), who proposed relation (2), close to the previous one, as the angle Φcv is larger
than the interparticle angle Φμ (Rowe, 1962; Rowe 1969; Frydman et al., 1973). The
use of fixed angles of dilatation and friction is a simplification and it would be prefer-
able to consider these angles as the function of density and pressure. This would,
however, result in even more complex mathematics and it is not compatible with the
aim of finding simple mechanical characteristics.
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The Mohr–Coulomb relation gives the failure of the soil:

)(sin)()( 3131 σσσσσ ′+′′−′−′= ΦF . (3)

The non-associated flow rule is:

σσξε ′′= ddHd p /)( , (4)

with the unknown scalar ξ and the plastic potential:

)(sin)()( 3131 σσσσσ ′+′−′−′=′ ΨH . (5)

Three different areas of soil are considered from the borehole wall to the infinite
radius (figure 1).

Plasticity appears between the radial stress rσ ′  and the circumferential stress θσ ′
in the horizontal plane (figure 1). This first plastic area extends between the radius
a (borehole wall) and the radius b (external radius of the first plastic area). As shown
by WOOD and WROTH [13], plasticity may also appear in the vertical plane between
the vertical stress zσ ′  and the circumferential stress θσ ′  (figure 2) in an area between
the radii b and c (external radius of both plastic areas).

An elastic area extends beyond the radius c.

3. THEORETICAL ELASTOPLASTIC EQUILIBRIUM
AROUND PRESSUREMETER

3.1. GLOBAL EQUILIBRIUM WITH ONLY ONE PLASTIC AREA

The global elastoplastic equilibrium was found with one plastic area (MONNET
and KHLIF [12]). The continuity of stress between the different areas allows evaluat-
ing two internal constants of the model, C1 and δ. A general condition of the equilib-
rium between stress and strain, which is the general form of the pressuremeter equa-
tion for one plastic area, is then:
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with )sin1/()sin1( ΦΦN ′+′−=     and   )sin1/()sin1( ΨΨn +−= . (8)

We can obtain the limit pressure pl for a volume of the probe which is double the
initial one. The borehole strain at the borehole is then equal to 12 − , and the con-
ventional limit pressure is then:
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This relation is quite different from that of AMAR’s et al. [1], which is based on
the Ménard experimental correlations:
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The Ménard relation was derived from many pressuremeter tests. Theoretical con-
siderations show that the main shearing takes place between the radial stress rσ ′  and
the circumferential stress θσ ′ , which lie in the horizontal plane. For a granular soil,
the plasticity condition shows that the level of shearing is proportional to the level of
stress applied to the shearing surface. For the pressuremeter test, the vertical stress is
normal to the horizontal surface, so zσ ′  can be considered to be the stress along which
shearing takes place. As the limit pressure is linked with a particular value of the
shearing stress, it must also be proportional to the vertical stress, which is obtained
from equation (9). The Ménard equation (10) seems to fit these considerations only
for a mean depth close to 12 m. For a test carried out closely to the surface, it seems
to underestimate the friction angle, while for test conducted very deeply it seems to
overestimate the friction angle. Futhermore, the Ménard relation does not take into
account the nature of the soil and the variation of the interparticle angle of friction. It
overestimates friction angle for loams, which have smaller interparticle angle of fric-
tion than sands and gravels.

3.2. GLOBAL EQUILIBRIUM WITH TWO PLASTIC AREAS

The continuity of stress between the three different areas allows the evaluation of
two internal constants C1 and δ of the model. We obtain a general condition of the
equilibrium between stress and strain, which is the general form of the pressuremeter
equation with two plastic areas:
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T a b l e

Mechanical parameters used in the numerical analysis

Parameter
studied

E
(MPa) ν G

(MPa) K0
σz

(kPa)
Φμ

(degree)
Φ'

(degree)
σz – 1 zone 40 0.42 14.12 0.724 50–1000 27.8 30
σz – 2 zones 40 0.30 7.26 0.429 50–1000 27.8 30
G – 1 zone 10–100 0.42 3.52–35.21 0.724 250 27.8 30
G – 2 zones 10–100 0.30 3.84–38.46 0.429 250 27.8 30
K0 – 1 zone 40 0.37–0.5 14.6–13.33 0.587–1 250 27.8 45
K0 – 2 zones 40 0.2–0.36 16.7–14.71 0.25–0.56 250 27.8 45
Φμ  – 1 zone 40 0.42 14.09 0.724 250 10–30 30
Φμ  – 2 zones 40 0.30 15.38 0.429 250 10–30 30
Φ' – 1 zone 40 0.42 14.29 0.724 250 27.8 30–45
Φ – 2 zones 40 0.30 15.38 0.429 250 27.8 30–45

The value of the coefficient C1 is usually close to one hundredth of the borehole
strain. For example, with the mean values of the numerical analysis (the table) and at an
applied pressure of 500 kPa, with a borehole deformation of 4.27⋅10–2, the value of C1 is
1.45⋅10–3, which is 3.4% of the radial deformation. This is very small and can be ne-
glected, and leads to a linear relation between the logarithm of the borehole strain at the
borehole wall and the pressure applied by the pressuremeter. The proportionality be-
tween these two variables was first shown by HUGHES et al. [10] with the use of Rowe’s
dilatancy theory. Such a relation allows the determination of the slope δ of the straight
line between the variables, which is a function of Φ ′, the angle of internal friction, and
Φμ, the interparticle angle of friction. If Φμ and δ are known, Φ ′, the angle of internal
friction of the soil, can be uniquely and accurately determined.

We can obtain the limit pressure pl for a volume of the probe which is double the
initial one. The borehole strain at the borehole is then equal to 12 −  and the con-
ventional limit pressure is then:
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The difference between the two cases is linked with the value of the radial stress at
the radius c of the external area of plasticity. For a single plasticity between r and θ,
the radial stress must be higher than the vertical stress, i.e., zrc σσ ′>′  and this leads to
the WOOD and WROTH [13] relation between K0 and Φ ′:

)'sin1(
1

0 Φ
K

+
≥ . (14)

4. NUMERICAL ANALYSIS FOR THE ELASTOPLASTIC THEORY

4.1. METHOD USED TO DETERMINE THE CHARACTERISTICS OF THE SOIL

The measurement of the slope (figure 2) of the curve representing a linear rela-
tionship between the logarithms of pressure and borehole strain at the borehole wall
allows the determination of the angle of internal friction using equations (1), (6)–(8).
This value is then inserted into equations (6), (11) to plot a theoretical pressuremeter
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Fig. 3. Control of the stress–strain parameters
for a test in a gravel site

curve, which is compared with the experimental one (figure 3). The fit between ex-
periment and theory must be exact in the unloading–reloading sequence so that the
Young modulus is properly controlled. This condition introduces an initial translation
(figure 3) of the theoretical curve, which can be considered as the plastic effect in-
duced by the pre-drilled technique. A correct fitting of the two curves must be exact
above the creep pressure to control the angle of friction. The greater the angle of fric-
tion, the higher the theoretical curve within the representation of figure 3. An accurate
matching of the curves means that the set of stress–strain parameters is correct for the
theoretical representation of the pressuremeter test.
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The correct adjustment in the theoretical and numerical curves from the beginning
to the end involves many points, and the objective to carry out a variation of each
parameter involves many more points. It is not possible to manage such a large num-
ber of results, so it was decided to simplify this study by using only one point of the
pressuremeter curve, which is a conventional pressuremeter limit. This value can be
obtained by the direct theoretical and numerical analyses for an expansion of the pres-
suremeter probe, which is double of the initial volume.

The common set of parameters used is as follows: E = 40 MPa, ν = 0.42, σz =
250 kPa, Φμ  = 27.8, Φ' = 30°. We then apply a perturbation to one of these pa-
rameters, for example, to the Young modulus so that the shear modulus varies, or to
the Poisson ratio so that K0 varies, or to the vertical stress, or to the friction angle,
or to the interparticle angle of friction, while keeping the others parameters con-
stant (the table). For the study of K0, it is necessary to change also the angle of fric-
tion so that two plastic areas appear. In the figures, CTRE4 is a result of equation
(10), which can be found in the report of European Regional Technical Committee
4 by AMAR et al. [1].

4.2. INFLUENCE OF THE VERTICAL STRESS

The theory takes into account the vertical stress as the intermediate stress between
the radial stress and the circumferential one. It shows that shearing takes place under
the conditions of stress whose value is close to that of the vertical stress. For granular
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Fig. 4. Influence of the vertical stress on the limit
pressure in a test with one plastic zone

Fig. 5. Influence of the vertical stress on the limit
pressure in a test with two plastic zones

soil, the limit pressure is then a function of the vertical stress and when the vertical
stress increases, the friction between the radial stress and the circumferential stress
leads to an increase of the limit pressure. This variation is described by theoretical
equations (9), (13), where the vertical stress is a multiplicative factor in the theoretical

Vertical Effective Stress (kPa)
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limit pressure. The finite element method (figures 4, 5) shows the same variation of
the limit pressure. The difference between the theory and the Plaxis calculus is close
to 250 kPa or 100 kPa and stays constant during a variation of the vertical stress from
0 to 500 kPa, which allows us to validate the influence of the vertical stress on the
limit pressure.

The Ménard correlation equation (10) assumes that the net limit pressure (the dif-
ference between the limit pressure and the horizontal at rest pressure) does not depend
on the vertical stress and appears far from the numerical results (figures 4, 5, curve
CTRE4). The estimation of the limit pressure by this relation should be used only in
the range of vertical stress between 100 and 200 kPa, where the differences in nu-
merical results remain in a narrow range.

4.3. INFLUENCE OF THE SHEARING MODULUS

The limit pressure is the value of the pressure linked with the volume of the probe,
which is twice the initial one. If the soil is stiffer, at a defined value of the pressure,
the deformation of the soil should be smaller, and the deformation to twice the initial
volume should be reached at a high value of the pressure. On the other hand, for a soft

0
500

1000
1500
2000
2500
3000
3500
4000

0 10000 20000 30000 40000

Shearing modulus G (kPa)

Li
m

it 
Pr

es
su

re
 p

l (
kP

a)

Theory

Plaxis

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000 40000

Shearing modulus G (kPa)

Li
m

it 
Pr

es
su

re
 p

l (
kP

a)

Theory

Plaxis
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limit pressure in a test with one plastic zone

Fig. 7. Influence of the shearing modulus on the
limit pressure in a test with two plastic zones

soil, at a defined value of the pressure, the deformation of the soil should be larger,
and the deformation to twice the initial volume should be reached at a low value of
the pressure. This evolution is predicted by the theory, and we can see (figures 6, 7)
that the shearing modulus has an increasing influence on the limit pressure. As the
shearing modulus increases, the limit pressure increases. Furthermore, the theory
can predict with the accuracy of 20% the limit pressure found by the Plaxis pro-
gram.

The correlation relation (10) of Ménard assumes that there is no influence of the
shearing modulus on the limit pressure and it is not plotted.
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4.4. INFLUENCE OF THE FRICTION ANGLE

The angle of friction acts as a resistance factor of the deformation of the soil, and
when the friction angle increases the limit pressure also increases. This is predicted
by the theory, where the limit pressure is a function (through the variable N ) of the
friction angle. This variation is reproduced by the finite element analysis made by
Plaxis, and an exact fitting between the theory and the numerical result is obtained
with an error smaller than 12% of the value of the limit pressure (figures 8, 9), which
validates the theory for the variation of the friction angle.
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Fig. 8. Influence of the friction angle on the limit
pressure in a test with one plastic zone

Fig. 9. Influence of the friction angle on the limit
pressure in a test with two plastic zones

If we consider the correlation relation of Ménard (10), it can be seen that this
gives an overestimation of the angle of friction below 35° and a poor estimation of the
friction angle with a large underestimation of above 35° for the two cases analysed
(figures 8, 9, curves CTRE4).

4.5. INFLUENCE OF THE INTERPARTICLE ANGLE OF FRICTION

The interparticle angle of friction varies from 10° for clay to 30° for sand and gravel.
The theory shows that it influences the dilatancy equation (1). It can be assumed that an
increase of the dilatancy increases the limit pressure, because the expansion of the soil
increases the volume of the plastic area around the probe. This theoretical phenomenon
is described by the theory (figures 10, 11), and when the dilatancy is large (equal to 20°
for an interparticle angle of 10° related to a friction angle of 30°), the limit pressure is
also high, while when the dilatancy is small (equal to 0° for an interparticle angle of 30°
related to a friction angle of 30°) the limit pressure is also low. The difference between
the theory and the finite element results stays in a small range and validates the influ-
ence of the interparticle angle of friction on the limit pressure.
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Fig. 11. Influence of the interparticle angle on the
limit pressure in a test with two plastic zones

There is no influence of the interparticle angle of friction on the limit pressure in
Ménard’s equation, which is not drawn here.

4.6. INFLUENCE OF AT REST PRESSURE COEFFICIENT K0

The at rest pressure coefficient K0 has a slight influence on the limit pressure. Its
small increase should increase the horizontal at rest pressure coefficient and conse-
quently the limit pressure. This evolution is predicted by the theory for one plastic
area (figure 12). In the second case studied (figure 13), the theoretical limit pressure
shows no variations, when the finite element solution shows a small increase in limit
pressure. However, the difference compared with the finite element calculation is in
a narrow range for a value of K0 higher than 0.3, which is related to the more common
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case where Poisson’s value is higher than 0.23. It can be seen that the relation pro-
posed by Ménard differs significantly from the theory. This is explained by the values
used for the calculation, with an angle of friction of 45°, which is needed to have two
different plastic zones. In the previous part (figures 8, 9), we have seen that relation
(10) widely underestimates the friction angle for its values larger than 35°.

5. CONCLUSION

We have presented a numerical analysis of the theory developed in order to inter-
pret the results of pressuremeter test, which takes into account the vertical and the
horizontal non-standard elastoplastic equilibria around the pressuremeter probe. The
plasticity may occur between the radial stress and the circumferential stress and be-
tween the vertical stress and the circumferential stress.

The theory shows that five mechanical parameters have an influence on the pres-
suremeter results in a granular soil (vertical stress, shearing modulus, friction angle,
interparticle angle of friction, coefficient of at rest pressure) and that the conventional
limit pressure is a function of these parameters. The numerical calculation of the pres-
suremeter test using the Plaxis code has been made with a variation of one of these
variables, the others remaining unchanged. The numerical results show the same
variation as the theory for each variable and a close agreement with the Plaxis results.
This validates the effect of these parameters on the pressuremeter results and shows
the influence of the vertical stress, the shearing modulus, the friction angle and the
dilatancy (through the interparticle angle of friction) on the conventional limit pres-
sure. Furthermore it shows that plasticity may appear in the vertical plane between the
vertical and circumferential stresses, which decreases the limit pressure.
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