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Abstract: We present the theory used for the interpretation of the pressuremeter test in cohesive soil
and its extension to the conventional limit pressure, which is defined as the pressure at the borehole
wall for a volume increase ∆V equal to the initial volume of the borehole. This conventional limit
pressure can be directly measured with the pressuremeter, whereas the determination of the theoreti-
cal limit pressure needs its extrapolation to an infinite expansion and cannot be directly measured.
The validation of this theory is made by the finite element method with the results of the Tresca stan-
dard model of Plaxis, which is compared with the theoretical expression. Some conclusions are
drawn on the validity of this new theory which allows the measurement and the control of shearing
modulus and shear strength of the natural soil.

1. INTRODUCTION

The pressuremeter is a well-known apparatus (MÉNARD [5]). It is widely used
nowadays for foundation engineering (AMAR et al. [1], CLARKE [2]) with mostly em-
pirical rules. The commonly used methods for the interpretation of the pressuremeter
measurement can be found in some states of the art (LADANYI [4], CLARKE [2]).

The elastoplasticity is the general frame of this study because it allows us to cover the
total range from small reversible displacements to large irreversible displacements. The
present approach may be considered as following the elastoplastic method (GIBSON and
ANDERSON [3], SILVESTRI [7]) extended to the determination of the conventional limit
pressure, which is influenced by the equilibrium in the vertical plane. The pressuremeter
test is considered as an in situ shearing test, so that it measures soil deformability, shear
resistance of the soil, and can be carried out in any soil, without sampling. The first part of
the theoretical demonstration was previously published (MONNET and CHEMAA [6]) but
the development to the conventional limit pressure was not shown then.

2. BEHAVIOUR OF COHESIVE SOIL AROUND THE PRESSUREMETER

2.1. HYPOTHESIS

We assume a test with an elastic behaviour at low level of stress. Numerical re-
sults with constitutive model (Cambou and Bahar, 1993) show that the test should be
assumed as an undrained one with a permeability lower than 10–10 m/s. We assume
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a standard plasticity for a high level of shearing and positive stress in compression. The
Tresca relation gives the failure of the soil between the maximum compression stress σ1

and the minimum compression stress σ3, with the associated flow rule and the scalar ξ

F(σ) = (σ1 – σ3) – 2.cu,    dε p = ξ . 
σ
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Fig. 1. Plastic areas around pressuremeter

Three different areas of soil are considered from the borehole wall to the infinite
radius (figure 1). Plasticity appears between the radial stress σr and the circumferen-
tial stress σθ in the first zone. This first plastic area extends between the radius ra
(borehole wall) and rb (external radius of the first plastic area). For a cohesive soil the
plasticity may appear in the vertical plane (WOOD and WROTH [8]) between the verti-
cal stress σz and the circumferential stress σθ in an area between the radii rb and rc
(external radius of both plastic areas). An elastic area extends beyond the radius rc.

2.2. EQUILIBRIUM CONDITION

In the horizontal plane and in the vertical plane, the equilibrium of an element of
soil is given by:

0. =+−
dr

dr r
r

σσσ θ , (2)

γσ
=

dz
d z (3)

probe found by numerical analysis.
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2.3. PRESSUREMETER RELATION WITH TWO PLASTIC AREAS

MONNET and CHEMAA [6] have shown that the continuity for the stress between the
three different areas allows finding the constant C1, and the relation between the pres-
sure applied by the pressuremeter probe and the displacement at the borehole wall:
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with

G
cC u−=1 . (5)

The value of coefficient C1 is usually equal to the hundredth of the radial strain. This
is very small and can be neglected. Equation (4) shows a linear relation between the
logarithm of the radial strain at the borehole wall and the pressure applied by the
pressuremeter as previously found (GIBSON and ANDERSON [4]). Such a relation al-
lows the unique and accurate determination of the shear strength cu by the slope of the
straight line between the variables.

2.4. PRESSUREMETER RELATION WITH ONE PLASTIC AREA

The continuity of stress between the two different areas gives a null constant C1.
The general equilibrium condition between stress and strain is:









+−








−=








G

c
c

zKp
cr

u u

uua

a

.2
ln1...1ln 0 γ . (6)

The proportionality between the axial strain at the borehole wall and the pressure ap-
plied by the pressuremeter is also obtained. The difference between the two cases is linked
with the value of the radial stress for the radius of the external area of plasticity rc.

The difference between the two cases is linked with the value of the radial stress
for the radius of the external area of plasticity rc. In the second case (failure between
r–θ only), the value of the radial stress must be greater than the vertical stress σrc > σz

and a condition between K0 and cu is derived:

z
cK u

.
10 γ

−≥ . (7)

2.5. CONVENTIONAL LIMIT PRESSURE WITH TWO PLASTIC AREAS

In the two cases, we obtain the conventional limit pressure plM with the assumption
of a volume of the probe which is double the initial one and a radial equal to
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12 − . The main advantage of this conventional pressure is that it can be directly meas-
ured in the pressuremeter test, which is not the case of the theoretical limit pressure found
by an extrapolation for an infinite expansion of the cavity. This particular value of the
radial strain is inserted in equation (4) and we obtain the conventional limit pressure:
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This relation is quite different from the Ménard experimental correlations, pro-
posed by the European Regional Technical Committee (AMAR et al. [1]):

zKcp ulM ...5.5 0 γ+=    if  plM – K0.γ.z < 300 kPa, (9)

zKcp ulM ..)25.(10 0 γ+−=    if  plM – K0.γ.z > 300 kPa.

The Ménard relation was a result of the experience in many pressuremeter tests at
mean depth. Theoretical considerations show that the shearing takes place between the
radial stress σr and the circumferential stress σθ, which lie in the horizontal plane. For
a cohesive soil, the plasticity condition shows that the level of shearing is independent of
mean stress. In the pressuremeter test, the mean stress is proportional to the vertical stress
and the level of shearing must be independent of σz. Equations (7) and (8) show that the net
conventional limit pressure is not linked with a particular value of the vertical stress.

2.6. CONVENTIONAL LIMIT PRESSURE WITH ONE PLASTIC AREA

The particular value of the radial strain is inserted in equation (6) to infer the con-
ventional limit pressure. It appears that the net conventional limit pressure is inde-
pendent of the vertical stress:
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3. NUMERICAL VALIDATION OF THE ELASTOPLASTIC THEORY

The theoretical expressions for the conventional limit pressure in the cohesive soil
depend on the vertical stress, the coefficient of pressure at rest, the shearing modulus
and the shear strength. We use the finite element program Plaxis with the Tresca model
to compute the value of the conventional limit pressure, which is compared with theo-
retical results. The model used is elastoplastic with a constant shearing modulus and five
parameters (Young modulus and Poisson ratio, undrained shear strength, no friction
angle, no dilatancy angle). The method used for the validation is a variation of only one
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parameter when the other ones stay constant. The evolution of the numerical conven-
tional limit pressure is compared with the value found by means of the theoretical ex-
pression. The values of the mechanical characteristics are shown in the table. The mesh
(figure 2) is composed of 9199 nodes with 1013 triangular elements of 15 nodes. The
mesh is refined close to the borehole to have a correct numerical evaluation of the radial
stress in the plastic area. The left limit is the borehole wall placed at 3 cm from the axis
to simulate a 6 cm diameter borehole and no horizontal displacement are allowed above
the pressuremeter probe, but vertical displacements are allowed. The right limit is placed
at a radius of 5 m from the axis with a horizontal at rest pressure and displacements
allowed in both directions. The lower limit is the horizontal plane, which intersects the
probe at its mid-length with vertical displacements not allowed. The upper limit is an
horizontal plane at 2 m from the mid-length of the probe. The ratio of L/D = 7.5 is
adapted to the dimension of the apparatus, which is commonly used.

T a b l e

The values of the mechanical parameters used in the numerical analysis

Parameter G
MPa K0

σz
kPa

cu
kPa

E
MPa ν

σz 1 zone 13.3 0.667 100–300 100 40 0.499
σz 2 zones 13.3 0.667 300–600 100 40 0.499
G 1 zone 3–67 0.667 250 100 10–200 0.499
G 2 zones 3–67 0.4 250 100 10–200 0.499
cu 1 zone 13.3 0.667 250 100–700 40 0.499
cu 2 zones 13.3 0.667 600 80–200 40 0.499
K0 1 zone 13.3 0.65–1.0 250 100 40 0.499
K0 2 zones 13.3 0.3–0.55 250 100 40 0.499

Fig. 2. The limit conditions of the mesh used

3.1. INFLUENCE OF THE VERTICAL STRESS

The theory takes into account the vertical stress as the intermediate stress between
the radial and the circumferential stresses. It shows that shearing takes place mainly in
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the horizontal plane. For cohesive soil, the net conventional limit pressure (the differ-
ence plM – p0) is independent of the vertical stress as shown by equations (8), (10),
where the vertical stress is an additive factor into the theoretical conventional limit
pressure so that the increase of the vertical stress gives an equivalent increase of the
conventional limit pressure. The FEM (figures 3, 4) shows the same variation of the
conventional limit pressure with an underestimation in the range of 8%. The Ménard
equation (9) assumes that the net conventional limit pressure does not depend on the
vertical stress, with an overestimation in the range of 7%.
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Fig. 3. Influence of the vertical stress σz on the
conventional limit pressure in a test with

one plastic zone

Fig. 4. Influence of the vertical stress σz on
the conventional limit pressure in a test with

two plastic zones
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Fig. 5. Influence of the coefficient K0 on
the conventional limit pressure with

one plastic zone

Fig. 6. Influence of the coefficient K0 on
the conventional limit pressure with

two plastic zones

3.2. INFLUENCE OF THE COEFFICIENT OF PRESSURE AT REST K0

The coefficient of pressure at rest K0 should increase the horizontal pressure at rest and
consequently should increase the conventional limit pressure. This evolution is found
based on the theory for one plastic area (figures 3, 5) with an underestimation in the range
of 6%. It can be seen that the relation proposed by Ménard gives more or less a larger dif-
ference compared with the Plaxis results with a difference in the range of 10%.
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Fig. 7. Influence of the shear modulus on
the conventional limit pressure in a test

with one plastic zone

Fig. 8. Influence of the shear modulus on
the conventional limit pressure in a test

with two plastic zones

3.3. INFLUENCE OF THE SHEARING MODULUS

As to the conventional limit pressure value it can be inferred that if the soil is
stiffer, then its deformation should be smaller, and should reach twice the initial vol-
ume for a high value of the pressure. On the other hand, for a soft soil and for a defi-
nite value of the pressure, the deformation of the soil should be larger, and should
reach twice the initial volume for a low value of the pressure. This evolution is de-
scribed by the theory, and we can see (figures 7, 8) that the shearing modulus has an
increasing influence on the conventional limit pressure. As the shearing modulus in-
creases, the conventional limit pressure increases. Furthermore, the theory can predict
with the accuracy of 14% the conventional limit pressure obtained by the Plaxis pro-
gram. But if we consider the correlative relation of the Ménard equation (8) we find
that there is no influence of the shearing modulus on the conventional limit pressure.
The new theory improves the interpretation of the pressuremeter test by the use of the
Young modulus as a parameter of the limit pressure.

3.4. INFLUENCE OF THE SHEAR STRENGTH

The shear strength acts as a resistance factor for the soil deformation, and when
the shear strength increases the conventional limit pressure increases as well. This is
found by the theory of the expansion of the pressuremeter probe with a conventional
limit pressure, which is the function of the shear strength. This variation is also ob-
tained by the finite element analysis carried out by Plaxis. It can be seen (figures 9,
10) that the evolution of the limit pressure is in the same range as the numerical re-
sults with a mean difference of 70 kPa for the limit pressure, which validates the the-
ory for the variation of the shear strength. If we consider now the correlative relation
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of Menard, we find an increasing difference with the numerical results of Plaxis and
a serious underestimation of the shear strength as the shear stress increases with
a mean difference of 360 kPa.
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Fig. 9. Influence of the undrained strength
on the conventional limit pressure

in a test with one plastic zone

Fig. 10. Influence of the undrained strength
on the conventional limit pressure

in a test with two plastic zones

4. CONCLUSION

We present the numerical validation of a theory which takes into account a three-
-dimensional state of stress around the pressuremeter, the plasticity which occurs
between the radial stress and the circumferential stress, and the plasticity which oc-
curs between the vertical stress and the circumferential stress.

The theory shows that the linearity between the radial stress and the logarithm of
radial strain at the borehole wall allows the measurement of the shear strength. This
value can be controlled by the comparison between the theoretical and experimental
pressuremeter curves and by the comparison between the theoretical and experimental
conventional limit pressures.

The theory shows that four mechanical parameters have an influence on the con-
ventional limit pressure (vertical stress, shearing modulus, shear strength, coefficient
of pressure at rest). The numerical calculation of the pressuremeter test by Plaxis
software has been made with a variation of one of these variables, while the other
ones remained unchanged. The theory shows the same variation of each variable as
the numerical results and a close agreement with Plaxis. This allows the validation of
the theory in the range of variation for the four variables identified.
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