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Abstract: In this paper, the analytical solution of porous medium consolidation with the rheological
Kelvin–Voigt skeleton is presented. The rheological model is characterized by four basic physical
features: elasticity, viscosity, plasticity and strength. One-dimensional problem consists in solving
equations for porous column filled with liquid and being a subject of one-dimensional compression
with load acting on a porous plate (allowing fluid flow), pressure gradient and weight of column it-
self. The results obtained  may be used also for determining of the effective parameters of the Biot
model. Depending on the type of equation, in the range of analytical solution, we make use of tech-
niques based on double integral transformation of Laplace and Fourier. Within the range of boundary
solutions for porous media consolidation the use is made of a finite element method.

1. INTRODUCTION

During consideration of porous medium consolidation problem, it would be neces-
sary to obtain a solution of a boundary issue in analytical form. In such a case, there
exists the possibility of analyzing any process being investigated based on mathemati-
cal analysis. In most cases, however, boundary issue is too complicated with regard to
irregularity of the  area investigated, irregularity of source functions, complex forms
of partial differential equations and therefore it is impossible to obtain an analytical
solution. In such cases, numerical methods are used for obtaining approximate solu-
tions.

In this paper, a method for obtaining analytical solutions with the use of the
Laplace transformation is presented and exemplified by the of displacements in the
Biot poroelasticity model with a rheological Kelvin–Voigt skeleton. The Biot–Darcy
poroelasticity model is introduced with equations for the movement of liquid and
solid medium phase, for flow continuity equation and constitutive relations. This al-
lows us to write the set of equations representing a Biot–Darcy linear consolidation
theory for isothermal process that describes the displacements of the skeleton and
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tension in liquid. Next, the solutions obtained were compared with the results of
a numerical solution.

Assume, according to STRZELECKI et al. [12], the constitutive relations for iso-
thermal process in the form:
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The set of equations representing the consolidation of porous medium with
a rheological Kelvin–Voigt skeleton for quasistatic processes, with the use of the Ein-
stein index notation, might be written in the form:
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where: N, M, H, R – the Biot constants; NT sη=  – the viscosity parameter;
tTk ∂∂+=Ψ 1  – the differential  operator in Kelvin–Voigt skeleton; k – the Darcy

filtration coefficient; f – the skeleton porosity. ηs – the viscosity of skeleton. i,ε  – the
velocity of skeleton dilatation, θ – the velocity of fluid dilatation, u – the skeleton
displacement, σ – the fluid stress, σij – the skeleton stress, δij – the Kronecker delta.
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The above set of equations describes the process of consolidation caused by filtra-
tion flow of viscous Newtonian liquid passing through the pores of the Kelvin–Voigt
skeleton. Solutions of this set were given by: AURIAULT et al. [1], EMMRICH [9],
STRZELECKI and ŻAK [13].

2. PRELIMINARY ASSUMPTIONS OF ONE-DIMENSIONAL CONSOLIDATION
MODEL WITH THE KELVIN–VOIGT RHEOLOGICAL SKELETON

The results of the consolidation process of column-shape porous medium, whose
solid particles being subjected to load and hydrostatic pressure gradient, are analyzed.
The examples of such a medium might be cohesive soils built of secondary minerals
such as illite, montmorillonite and kaolinite. Analytical solutions of a one-dimensional
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problem with the classical Biot model were proposed by: AURIAULT et al. [1],
JASIEWICZ [11], BAUER and STRZELECKI [2], GASZYŃSKI [10], EMMRICH [9] and
DERSKI [5], [6]. As mentioned above, we assume that all kinds of loads are applied in-
stantly at the time t = +0 which is represented by the Heaviside function. The subject of
analysis was the consolidation caused by external load and hydrostatic pressure gradient
which is schematically presented in figure 1.

Fig. 1. Sketch of one-dimensional consolidation of the Biot skeleton

Boundary conditions:
Load condition on the upper boundary: )(),(33 tPth ησ −= .
Fluid stress condition on the upper boundary: )(),( tPth aησ −= .
Stress condition on the bottom boundary: )(),0( tPt bησ −= .
Displacement condition on the bottom boundary: u(0, t) = 0.
Initial conditions: 0)0()0( =− εσ H .
Such functions as fluid stress, skeleton stress and deformation were the subject of

the Laplace transformation. Image functions in the Laplace space are denoted by

),,,,()~,~,~,~,~( 3333 θεσσθεσσ uLu = .

3. ANALYTICAL SOLUTION

Taking into account the initial conditions, the set of equations for the consolidation
of the porous medium with the Kelvin–Voigt skeleton in the Laplace space takes the
form:
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In order to obtain the Laplace transformation for boundary conditions, the
Heaviside function was transformed, thus boundary conditions in the Laplace space
assume the form:

s
Pth −=),(~

33σ ,   
s
Pth a−=),(~σ ,   

s
Pt b−=),0(~σ ,   0),0(~ =tu ,

where s is the transformation parameter.
After transformations of (4) we obtain:
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The solution of (5) in the Laplace space according to DITKIN and PRUDNIKOW [9]
is as follows:

CBeAe sPxsPx ++= − )()(~σ . (6)

After double differentiation, inserting the solution into flow equation in the set of
equation (4) and double integration we obtain the function of displacements:

EDxBeAe
scsPRNT

Hu sPxsPx ++−
+

−= − )(
)()(2

~ )()( , (7)

where D, E are the functions of the integration of parameter s .
Inserting functions (6) and (7) into boundary conditions, making use of C = HD

and constitutive relations, we obtained the set of algebraic equations used for deter-
mining the constants A, B, C, D and E. After inserting the constants into image func-
tions (6) and (7) we arrived at final forms of equations (6) and (7). In this paper, we
present the analysis for an image function of the displacement u~ :












++

+++−
=

))(sinh())(()(
2))(sinh())(cosh())()cosh((

4
~

22

2

sPhsascsPs
sPhsPxsPhx

TRN
PHu












++

+−−
+

))(sinh())(()(
))(sinh())()cosh((

4
)(

22

2

sPhsascsPs
sPhsPhx

TRN
PPH ab



One-dimensional consolidation of the porous medium 119












++

+++−+
−

))(sinh())(()(
2))(sinh())(cosh())()cosh((

4
)(

222

2

sPhsascsPs
PsPhPsPxPsPhxP

TNR
HRH abab












+

+++−
−

))(sinh()()(
2))(sinh())(cosh())()cosh((

2 sPhscsPs
PsPhPsPxPsPhxP

RNT
H abab

x
saNTs

PPa

)(2 +
−

+ .  (8)

To find the retransformed form of displacement image function, the residue theory
was used. Based on the Cauchy residue theorem and the Jordan lemma, the original of
the rational function )(~ sF  with single poles sk is the following rational function:
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where LI(s) and MI(s) are prime polynomials with respect to themselves, and the de-
gree of LI(s) is lower than that of MI(s).

After retransformation, the function describing the displacements (u) takes the
following form:
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The series in equation (10) are as follows:
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4. RESULTS OF SKELETON DISPLACEMENTS

Equation (10), i.e., the analytical solution, was used for calculating vertical dis-
placements (u) at given loads: Pa105.1 5⋅=P ; Pa1055.0 5⋅=aP ; Pa102.1 5⋅=bP ;
the sample parameters m0.10=h ; 35.0=f  and Biot constants: Pa105 7⋅=M ;

Pa105.1 7⋅=R ; Pa105.2 7⋅=N ; Pa1025.2 7⋅=H ; Pa1075.3 7⋅=Q . The results of
calculations are presented in figure 2.
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Fig. 2. Consolidation progress in the medium investigated.
The results obtained with analytical method

In order to verify the consolidation results for poroelastic Biot medium with
rheological Kelvin–Voigt skeleton, they were analyzed numerically based on the one-
dimensional rheological Kelvin–Voigt model, under the following boundary conditions:
upper boundary Pa105.1 5⋅=σ , Pa105.1 5⋅=aP , bottom boundary Pa105.1 5⋅=bP .
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Fig. 3. Consolidation progress in the medium investigated.
The results obtained with numerical method
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The sample is rigidly restricted from its bottom, which protects this bottom from
vertical displacements, and is subjected to hydrostatic pressure gradient (caused by
the loads Pa and Pb). The results of calculations, performed with FlexPDE program,
are presented in figure 3.

5. SUMMARY AND CONCLUSIONS

The influence of pressure gradient in liquid on the creeping process of the sample
obtained using analytical and numerical methods is presented in figures 2 and 3, respec-
tively. The shapes of the curves representing the consolidation progress obtained with
both methods are similar which confirms that equations obtained with analytical method
are correct. Small differences in the values obtained result from numerical errors.

The plots presented differ significantly from classic Biot model, which simulates
immediate settlements and might often represent significant stage of final settlement.
Numerous tests performed with odeometers demonstrate that in reality we do not ob-
serve any immediate settlements of samples. The Biot–Darcy model with the Kelvin–
Voigt skeleton describes the creeping process of cohesive soils.

After an appropriately long time, the creeping approaches the constant values of dis-
placements, which means that the sample consolidation is completed. The final effect of
consolidation is linearly proportional to the cross-section coordinate of the sample.

The initial conditions assumed affect significantly the consolidation computation
with the numerical method. The assumption of initial settlements different from zero
considerably disturbs the computing process in used by us FlexPDE program and
generates significant numerical errors.
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