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Abtract: Liquefaction is an example of a diffuse mode of failure. It occurs in loose sands when an
effective mean pressure falls to zero. This phenomenon has been studied extensively both experi-
mentally and theoretically. Three constitutive laws, based on different assumptions, capable of pre-
dicting liquefaction are given. These are the Pastor–Zienkiewicz generalized plasticity model and
Darve’s incrementally non-linear and octo-linear models. The results of numerical simulations of
element tests are presented.

1. INTRODUCTION

Liquefaction of soils can be defined as a state of vanishing intergranular stresses.
This phenomenon may be caused by cyclic or static (monotonically increasing) load-
ing (KRAMER and SEED [1]). Most often liquefaction occurs during earthquakes or
other quasi-seismic events. The static liquefaction is the liquefaction resulting from
the application of noncyclic shear stresses. Due to liquefaction failure can occur,
spreading over large mass of soil deposits, commonly referred to as flow slides. This
is an example of a diffuse mode of failure.

Liquefaction occurs in loose sands and is caused by decreasing effective stresses
due to direct application of external forces (human activity, earthquakes) or indirectly
through the changes of pore pressures (rainfalls). It can occur when the hydraulic
gradient of an upward current in saturated soil or an upward gas current equalizes the
gravity forces (“boiling sands”) due to vibrations (earthquakes) of saturated loose or
even medium dense sands or when rapid deviatoric loading is applied to a saturated
very loose sand (“quicksand”).

In the past decades, liquefaction of soils has been extensively studied both ex-
perimentally and theoretically. This short study presents three models capable of de-
scribing static liquefaction.
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2. CONSTITUTIVE MODELS DESCRIBING LIQUEFACTION

2.1. INTRODUCTION

In general, constitutive laws are formulated by means of mathematical equations
involving coefficients which represent parameters of a given material (a soil). Usually
these coefficients are not constant but depend on the stress level and a state of soil.

Deformations of soils are irreversible with the effect of very low loading applied.
Thus the relationship between stresses and strains must be non-linear. Moreover,
a small load increment applied in a time increment induces a small unique response.
This feature is known as the principle of determinism in the small and implies the
incremental formulation of constitutive laws. This means that there must exist a tenso-
rial function H relating strain, stress and time increments as well as scalar and/or ten-
sorial internal variables (also called memory parameters):

0),,( =dtddχ σεH . (1)

For the materials insensitive to the rate of loading the constitutive function Hχ is
independent of the time increment dt. The constitutive ralationship can be expressed
in the equivalent form (DARVE and ROGUIEZ [5]):

)( σGε dd χ=     or    )(1 εGσ dd −= χ . (2)

For inviscid materials the functions Gχ and 1−
χG  are homogeneous of degree 1,

non-linear and anisotropic with respect to dσ. For homogeneous functions Euler’s
theorem holds which gives:
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where •  denotes a norm in the stress or strain space.
The tensors Mχ and Pχ depend only on the internal variables χ and the direction of

dσ or dε. This directional dependence of the constitutive tensors implies the existance
of the so-called tensorial zones (DARVE and LABANIEH [4]). A tensorial zone is
a domain in the loading space characterized by a unique tensor Mχ (Pχ). Within the
same tensorial zone the relationship between dσ and dε is incrementally linear. The
whole space of possible loading directions can be divided into a number of tensorial
zones. All constitutive laws can be classified in terms of this number.
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Elastoplastic constitutive laws with only one unique criterion distinguishing be-
tween loading and unloading are the examples of laws with two tensorial zones. In
particular, the models proposed by Pastor and Zienkiewicz (PASTOR et. al. [6]) for-
mulated within the framework of generalized plasticity theory represent this group.

The models proposed by Darve are formulated in a different way. An incremen-
tally octo-linear model (DARVE and LABANIEH [4]) is the example of the law with
eight tensorial zones, whereas the incrementally non-linear model (DARVE [2]) repre-
sents the group with infinite tensorial zones.

All the models mentioned can predict the liquefaction of sands.

2.2. GENERALIZED PLASTICITY

Generalized plasticity concept introduced by ZIENKIEWICZ and MRÓZ [8] and de-
veloped by ZIENKIEWICZ et al. [9] and PASTOR et al. [6], [7] defines in the stress
space a unit vector n which determines loading and unloading directions for any stress
state. Strain increments are given as follows:

0for >= nσσCε TL ddd  (loading), (4)

0for <= nσσCε TU ddd  (unloading). (5)

The case of neutral loading, when no irreversible strain occurs, is defined by:

0=nσTd . (6)

The continuity condition between loading and unloading implies the general form of
the constitutive tensors:
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where ngL/U are the arbitrary tensors of unit norm and HL/U are the tangent plastic
moduli (the scalar functions of loading and unloading parameters).

When neutral loading takes place a strain increment is uniquely determined since:

σCεσCσC0nσσ dddddd eULT =⇒==∀ ,: . (8)

The tensor Ce characterizes the elastic behaviour of a soil, since during neutral
loading no irreversible strain is produced.

It is assumed that the strain increment can be divided into two components: elastic
and plastic:

pe ddd εεε += , (9)
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where

σCε dd ee = ,     σnnε d
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= . (10)

In the generalized plasticity theory, particular components (ngL /U, n, HL /U) can be
postulated without introducing the notions of yield surface nor plastic potential.

As observed in experiments, loose sands loaded under undrained conditions ex-
hibit loss of the effective intergranular stress (the mean stress in figure 1a) and a peak
in deviatoric stress (figure 1b) after which the strength reduces to zero and the pore
pressure increases continuously (figure 1c). The important thing is that the pore pres-
sure increases during the whole loading. This means that sand densifies which indi-
cates hardening.
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Fig. 1. Predictions of undrained sand behaviour according to
the Pastor–Zienkiewicz model

In order to simulate a decrease in strength in hardening regime, non-associated
flow rule must be assumed. In the model proposed by Pastor and Zienkiewicz for
sands, this effect has been achieved by assuming two different sets of constants de-
fining the unit tensors ngL and n during loading (Mf/g, α f/g). The assumed formulae in
triaxial stress space are as follows:
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where p′ is the mean stress, q – the deviatoric stress, θ – the Lode’s angle.

2.3. MODELS BASED ON INTERPOLATION RULES

Polynomial series expansion for the function Mijkl (equation (3a)) gives:
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Equations (3a) and (16) give:

...11 2
2
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(17)

Equation (17) is the general form of a family of rate-independent constitutive re-
lations. The first term represents all the elastic (hypoelastic) laws. After rejecting
terms of the order higher than two we obtain the incrementally non-linear constitutive
relations of second order (DARVE [2]):

pqklijklpqklijklij ddM
d

dMd σσσε 10 1
σ

+= . (18)

Three assumptions have been made to complete the formulation of the model:
• the incremental relationship (18) is orthotropic, which means that the symme-

tries with respect to the planes of spatial coordinate system are postulated;
• the shear behaviour is incrementally linear, i.e., 01 =ijklpqM  for k, l, p, q ≥ 4;
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• non-linearity is restricted to the diagonal terms of 1
ijklpqM , i.e. 01 =ijklpqM  for

(k, l) ≠ (p, q).
Equation (18) takes the following form:
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with Ei and j
iv  – the Young modulus and Poisson’s ratio, respectively. The super-

script “+” refers to compression (dσii > 0), and “–” to extension (dσii < 0) with respect
to the direction i of “generalized” triaxial paths (the other two stresses are constant:
dσjj = dσkk = 0).

The “generalized” tangent Young moduli and Poisson’s ratios are defined along
these paths by (no summation):
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Equations (19) are homogeneous of degree one with respect to dσ. This means
that they describe a rate-independent behaviour. They are also non-linear with respect
to the stress increment (regarding square terms), which means that they can describe
plastic (irreversible) strains after a stress cycle (dσ, –dσ). This means that it is impos-
sible to decompose a total strain increment into an elastic and plastic parts. Elasticity
and plasticity are intrinsically mixed within the constitutive relation.

The set of equations (19) is a non-linear (quadratic) interpolation between the
material responses to generalized triaxial loading. Making use of the same matrices
N± (equation (20)) linear interpolation between orthogonal directions can be made
giving the “octo-linear” model (DARVE and LABANIEH [4]):
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For both models the behaviour of a soil has to be checked in triaxial tests (prefera-
bly true triaxial) and described by analytical functions that involve state variables and
memory parameters. Thus, these quantities are implicitly contained in the matrices N±.

3. LIQUEFACTION CRITERION

It is commonly stated that the water saturation is one of the necessary conditions
to initiate liquefaction. The results obtained by Lanier and Bloch (DARVE [3]) prove
the possibility of liquefaction of dry sand. So the deciding factor is the lack of volume
variation or at least its limitation.
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Fig. 2. Simulation of proportional strain paths under different isochoric conditions

In general, under triaxial conditions the proportional strain loading is given by:

1321 ,const εεεε Rdddd −=== . (23)
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R is the constant representing the degree of limitation of volumetric variation. R = 0.5
indicates isochoric loading (no variation of volume).

Figure 2 presents the results of the simulations of triaxial loading at different val-
ues of R performed on loose sand described by the incrementally non-linear law. In
these simulations, liquefaction occurs for R > 0.41.

4. CONCLUSIONS

Static liquefaction occurs in loose sands loaded under approximately isochoric
conditions. This may lead to dangerous phenomena such as landslides. Liquefaction
can be predicted based on constitutive laws of different classes. The capability of
liquefaction prediction depends mainly on the ability to reproduce the non-linear ine-
lastic and non-associative behaviour of a soil.
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