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Abstract: The meshless local Petrov–Galerkin (MLPG) method with Heaviside step function as the
weighting function is applied to solve the extended Flamant problem. There are two different classes
of trial functions considered in the paper: classical radial basis functions (RBF) as extended multi-
quadrics and compactly supported radial basis functions (CSRBF) as Wu and Wendland functions.
The method presented is a truly meshless method based on a set of nodes only. This approach allows
direct imposing of essential boundary conditions; moreover, no domain integration is needed and no
stiffness matrix assembly is required. The solution of the extended Flamant problem is presented. The
performance of RBFs and CSRBFs proposed is compared and the effect of the sizes of local subdo-
main and interpolation domain is studied. The results obtained show the accuracy and numerical
performance of the method.

1. INTRODUCTION

During the past decade, the idea of using meshless methods for numerical solution
of partial differential equations has received much attention as an alternative to the
Finite Element and Boundary Element methods. The main reason for the development
of meshless methods is to overcome some well-known drawbacks of FEM, such as:
labour-intensive process of mesh-generation, poor derivative solutions, mesh distor-
tion during large deformations, shear locking, etc. Using meshless methods one can
get rid of, or at least alleviate the difficulty of, meshing and remeshing the entire do-
main; by only adding or deleting nodes in the desired area, instead.

The initial idea of meshless methods originates from the Smooth Particle Hydro-
dynamics (SPH) method by GINGOLD and MONAGHAN [6]. A serious study of mesh-
less methods started after the publication of the Diffuse Element Method by
NAYROLES et al. [10]. Several meshless methods have been proposed subsequently:
Element-Free Galerkin method (EFG) by BELYTSCHKO et al. [4]; Reproducing Kernel
Particle Method (RKPM) by LIU et al. [9]; hp-cloud method by DUARTE and ODEN
[5]; the Partition of Unity Method (PUM) by BABUŠKA and MELENK [3]. All of these
methods belong to a class of Galerkin methods; the major differences between them
arise from the techniques used for interpolating the trial function. Although for the
interpolation of the trial and test functions and the solution variables no mesh is re-
quired, it is inevitable that background cells should be used in these methods for the
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integration of the weak-form over the problem domain. Therefore, these methods are
not ‘truly’ meshless.

A ‘truly’ meshless method, called the meshless local Petrov–Galerkin (MLPG)
method, has been developed by ATLURI and ZHU [1], based on local subdomain equi-
librium rather than on a global one. The MLPG method is based on a local weak form,
and an integration method in regularly shaped local domains (such as rectangles and
ellipsoids in 2D or spheres in 3D) is developed. An inherent feature of the method is
its flexibility in choosing the size and the shape of the local sub-domain. The solution
procedure does not require any element or mesh for either field interpolation or back-
ground integration.

The survey of the MLPG test functions can be found in ATLURI and SHEN [2]. The
authors examined six different test functions, which lead to six different MLPG
schemes. Among these, the one using the Heaviside function as the weighting func-
tion over a local subdomain proved to be highly promising because the integration
difficulties can be removed, as it there was no domain integral (except body forces),
and only a regular boundary integral along the edges of subdomains is involved.

The choice of optimal trial function is not a trivial task either. In fact, most of ex-
isting meshless methods have some inconveniences due to the interpolation schemes
and corresponding numerical integration difficulties. The shape functions obtained
from the common interpolation schemes (MLS, PUM, RKPM, etc.) in these meshless
methods are non-polynomial functions and lack the delta function property, which
causes certain difficulties, e.g., special treatments have to be introduced to impose
essential boundary conditions, and/or modified numerical integration methods have to
be employed.

Recently, radial basis functions (RBFs) (HARDY [7]) have been employed in solving
partial differential equations. Excellent interpolation properties became the key to suc-
cessful application of RBFs within meshless methods (LIU and GU [8], ATLURI and
SHEN [2]). RBFs can be divided into two classes: globally supported RBFs which we
refer to as classical radial basis functions and a new class of compactly supported radial
basis functions (CSRBF) (WU [12], WENDLAND [11]). It should be noted that the shape
functions based on all RBFs satisfy the delta function property.

2. INTERPOLATION USING RADIAL BASIS FUNCTIONS IN MLPG

The MLPG method is based on a local weak formulation of BVP. We consider two-
dimensional problem of solid mechanics in the domain Ω, bounded by ∂Ω (figure 1):

0, =+ ijij ρσ , (1)

where σij is the Cauchy stress tensor, ρi represents the body force vector. The bound-
ary conditions are given as follows:
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ijiji tnt ==σ     on the natural boundary ∂Ωt , (2)

ii uu =     on the essential boundary ∂Ωu , (3)

where nj is the unit outward normal to the domain Ω, see figure 1. The local form of
the BVP (1), over a local sub-domain Ωs bounded by ∂Ωs, can be obtained using the
weighted residual method:

0)( , =Ω+∫
Ω

dv ijiji

z

ρσ , (4)

where νi is the Heaviside step function: νi(x) = 1 if x is in the sub-domain Ωs, other-
wise νi(x) = 0. This assumption leads to the following form of local equilibrium (4):

Ω+Ω∂=Ω∂−Ω∂ ∫∫∫∫
Ω∂Ω∂Ω∂Ω∂

ddtdtdt iiii

sstsusw

ρ . (5)

Fig. 1. The scheme of meshless local domains definition
– the support domain and interpolation domain of the node i

It has to be emphasized that equation (5) has a very simple form, containing only
the regular boundary integrals along the boundaries of sub-domains and only one area
integral of body forces. The local weak form is based on the local sub-domain Ωs

centred at the nodal point xi. The shapes of sub-domains can be chosen arbitrarily
such as a rectangle or a circle (see figure 1).

For a node xi, there are two local domains: the test function domain (the same as
the local sub-domain Ωs) for νi(x) = 1 (size rs) and the interpolation domain Ωq for
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xq (size rq). Figure 1 presents the local support domain Ωs of a node xi and the in-
terpolation domain Ωq for an integration point xq. These two domains are independ-
ent and defined by rs = αid and rq = αqd, respectively, where αi and αq are the coeffi-
cients and d is either the distance from the node i to its closest neighbouring node
or the global boundary, whichever is smaller. As stated in the abstract, we are going
to investigate the optimal values of αi and αq for a sample BVP, namely the Flamant
problem.

In the present study, we use the interpolation scheme for the displacement function
u(x) defined in the domain Ω based on a set of nodes, as described by XIAO and
MCCARTHY [13] and XIAO [14]. The radial basis functions used in current survey are
as follows:

• The first class – the classical RBFs are represented by the Extended Multiquad-
rics function:

fi(r) = (r2 + c2)β, (6)

where c and β are the parameters of the function. In simulation presented, the values
of c = 2.5 and β = 1.03 were chosen after XIAO and MCCARTHY [13].

• The second class contains compactly supported RBFs, namely WU [12] and
WENDLAND [11] functions. All these functions are strictly positive definite in Rd for
all d less than or equal to some fixed value and can be constructed in such a way as to
have any desired amount of the smoothness 2k.

We consider the following CSRBFs:
• Wu-C2:
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• Wendland-C2:
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• Wendland-C4:
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where: (α)+ = α for α ≥ 0 and (α)+ = 0 for α < 0 and δ is the support radius of the func-
tion fi. In the present study, the value of δ = 1000 was choosen for the Wu-C2 and
Wendland-C2 functions and δ = 200 for the Wendland-C4 function, according to
XIAO [14]. It is obvious that for such big values of δ the support size of a single node
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covers the whole domain. In order to make the interpolation domain size more exactly
localized, we set the δ value as a parameter and used fixed value of αi in the same way
as for classical RBFs.

3. THE GENERALIZED FLAMANT PROBLEM

In the present study, the benchmarking problem is the Flamant problem. A strip
foundation on elastic soil is subjected to a uniform load q (figure 2).

Fig. 2. The generalized Flamant problem

The analytical solution is a generalization of the Flamant problem. The values of
the coefficients of stress tensor in the plane xz are given as follows:
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There is a half-space considered in the analytical solution; such an assumption
leads to plane strain problem. The numerical solution under plane strain conditions
imposes restrictions on the domain size.
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Fig. 3. The discretization domain for a sample Flamant problem and the node distribution

The proposed dimensions of the domain are: 50 m width and 25 m height, the
foundation width is 2 m. The symmetry of the problem allows us to consider only
a half of the domain, see figure 3. The numerical solution using MLPG leads to
a straightforward implementation because of linear elastic model used.

4. RESULTS OF THE NUMERICAL SIMULATION

The problem domain is discretized into 151 nodes as shown in figure 3. The rela-
tive errors of σzz and σxx stress components at the point (x = 0.42, z = 0.88) are given in
figures 4–6. The relative error is defined as follows: e =│σij – σij│/σij, where σij is the
analytical stress. Figure 4 gives the results for classical RBF – the Extended Multi-
quadrics, figure 5 – the results for Wendland-C2 CSRBF, and figure 6 – the results for
Wendland-C4 CSRBF. The Wu-C2 results were almost identical to those of Wend-
land-C2, so no plot is given.

Fig. 4. Error of stress obtained for different values of the parameters αq and αi
using the Extended Multiquadrics RBF
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Fig. 5. Error of stress for different values of the parameters αq and αi
using the Wendland-C2 RBF

Fig. 6. Error of stress for different values of the parameters αq and αi
the using Wendland-C4 RBF

For classical RBF the size of local domain αi = 0.4 was clearly too small. The
best results are achieved for αi = 0.75 and αi = 0.95, while the optimal interpolation
domain size αq is 3.0. The results for CSRBF prove definitively that the accuracy is
generally higher than that of classical RBFs interpolation. Slightly more accurate
results are observed for the C4 interpolation than for the C2 one. It is interesting to
observe for C2 a reverse order of αi series in the case of σzz and σxx. Greater accu-
racy for σzz is achieved for smaller αi, but the values of σxx are more accurate for
higher values of αi. In fact, a close look at the scale of both errors gives clear an-
swer: for optimal results one should choose αi = 0.75 or more and αq at least equal
to 2.5, but no more than 6.0.
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5. CONCLUSIONS

The results presented revealed a high usefulness of MLPG method in solving
geomechanical problems. Two classes of RBFs, i.e., the classical ones and CSRBFs,
were compared. The influence of the sizes of local subdomain and interpolation do-
main on the method accuracy was studied as the starting point for future and more
precise investigations.
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