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Abstract: In the present paper, the governing equations of hydromagnetic double-diffusive convec-
tion problem of Veronis’ type coupled with cross diffusion are linearized by the construction of
a proper transformation and the relationship between various energies is established. The analysis
made shows that total kinetic energy associated with a disturbance is greater than the sum of its total

magnetic and concentration energies in the parameter regime, ,1
π4π 2

2
422

1 ≤
′

+
k

RQ S

τ
σσ  where Q,

σ, σ1, SR′ , and τ, respectively, represent the Chandrasekhar number, the thermal Prandtl number, the
magnetic Prandtl number, the modified concentration Rayliegh number and the Lewis number, and
k2 is a constant (to be defined later on). The result is valid for quite general boundary conditions.

1. INTRODUCTION

The stability properties of binary fluids are quite different from those of pure
fluids because of the SORET and DUFOUR effects [1], [2]. An externally imposed
temperature gradient produces a chemical potential gradient, and the phenomenon
known as the Soret effect arises when the mass flux contains a term that depends
upon the temperature gradient. The analogous effect that arises from a concentration
gradient dependent term in the heat flux is called the Dufour effect. Although it is
clear that the thermosolutal and the Soret–Dufour problems are quite closely related,
their relationship has never been carefully elucidated. They are, in fact, formally
identical and identification is done by means of a linear transformation that takes
the equations and boundary conditions for the latter problem into those for the for-
mer. The analysis of double diffusive convection becomes complicated in the case
where the diffusivity of one property is much greater than the other. Further, when
two transport processes take place simultaneously, they interfere with each other
and produce cross-diffusion effect. The Soret and Dufour coefficients describe the
flux of mass caused by temperature gradient and the flux of heat caused by concen-
tration gradient, respectively. The coupling of the fluxes of the stratifying agents is
a prevalent feature in multicomponent fluid systems. In general, the stability of such
systems is also affected by the cross-diffusion terms. Generally, it is assumed that
the effect of cross diffusions on the stability criteria is negligible. However, there
are liquid mixtures for which cross diffusions are of the same order of magnitude as
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the diffusivities. There are only few studies available on the effect of cross diffusion
on double diffusion convection, largely because of the complexity in determining
these coefficients. HURLE and JAKEMAN [3] have studied the effect of the Soret
coefficient on the double-diffusive convection. They have reported that the magni-
tude and sign of the Soret coefficient were changed by varying the composition of
the mixture. McDOUGALL [4] has made an in depth study of double-diffusive con-
vection, where both Soret and Dufour effects are important.

CHANDRASEKHAR [5] in his investigation of magnetohydrodynamic simple Bénard
convection problem sought unsuccessfully the regime in terms of the parameters of the
system alone, in which the total kinetic energy associated with a disturbance exceeds the
total magnetic energy associated with it, since these considerations are of decisive signifi-
cance in deciding the validity of the principle of exchange of stabilities. However, the
solution for w(= cons tan t(sin πz) is not correct mathematically (and Chandrasekhar was
aware of it). BANERJEE and KATYAL until 1985 did not pursue their investigation in this
direction and consequently did not see this connection. This gap in the literature on mag-
netoconvection has been completed by BANERJEE and KATYAL [6] who presented a simple
mathematical proof to establish that Chandrasekhar’s conjecture is valid in the regime
Qσ1 ≤ π2 and further this result is uniformly applicable for any combination of a dynami-
cally free or rigid boundary when the regions outside the liquid are perfectly conducting
or insulating. BANERJEE and KATYAL [6] showed that in the parameter regime

1
π2
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σQ

the total kinetic energy associated with a disturbance is greater than the total magnetic
energy associated with it.

The present analysis extends this energy consideration to the hydromagnetic dou-
ble-diffusive convection problem of Veronis’ [7] type coupled with cross diffusion.
We establish that in the parameter regime
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the total kinetic energy associated with a disturbance is greater than the sum of its total
magnetic and concentration energies. A similar characterization theorem for hydro-
magnetic double-diffusive convection problem coupled with cross diffusion of Stern’s
[8] type is also established.

2. MATHEMATICAL FORMULATOIN AND ANALYSIS

Here we consider a viscous and finitely heat-conducting fluid statically confined
between two horizontal boundaries z = 0 and z = d of infinite horizontal extension and
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finite vertical thickness which are, respectively, maintained at uniform temperatures T0

and T1 and concentrations C0 and C1 at lower and upper boundaries, respectively,
where either T0 > T1, C0 > C1 (Veronis’ configuration) or T0 < T1, C0 < C1 (Stern’s
configuration) in the presence of a uniform magnetic field acting in a direction oppo-
site to that of gravity. The concentration gradient/temperature gradient thus main-
tained will, respectively, be qualified as favourable and unfavourable because of their
tendencies to decrease/increase the density of the fluid vertically upwards. The extra
effect (the Dufour effect and the Soret effect) we consider here is that of the coupled
fluxes of the two properties due to irreversible thermodynamic effects.

Let the origin be taken on the lower boundary z = 0 with the z-axis perpendicular to it
along the vertically upward direction so that the xy-plane then constitutes the horizontal
plane z = 0. The basic hydrodynamic equations governing the present problem of hy-
dromagnetic double-diffusive convection coupled with cross diffusions are:
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where

22

3
22 jjij eeΦ μμ −= . (6)

is the rate at which energy is dissipated by viscosity in each element of the fluid, and
eij is the strain tensor given by
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For an incompressible fluid, we have

.0=jje

Thus we have
22 ijeΦ μ= .

Making use of equations (1)–(3), we can simplify equation (5) to the following form:
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Solonoidal character of magnetic field yields
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In the above equations, ρ  is the density; t is the time; )3,2,1( =jx j are, respec-
tively, the Cartesian co-ordinates (x, y, z); ),,( wvuu j =  are the components of the
velocity; )3,2,1( =iX i are the external force components in x, y, z-directions; p is the
pressure; μ  is the viscosity; Cv is the specific heat at constant volume; T is the tem-
perature; C is the concentration; K is the coefficient of thermal conductivity; 1η  is the
coefficient of mass diffusivity; Sf and De are coefficients that arise due to the Soret
effect and Dufour effect; αα ′and  are, respectively, the thermal and analogous con-
centration coefficients of expansion; ),0,0( HHi = is the magnetic field; eμ  is the
magnetic permeability; η  is the magnetic diffusivity.

We now make use of the Boussinesq approximation to simplify the above funda-
mental system of equations. The essence of this approximation is that the inertial ef-
fects produced by density variations are negligible in comparison to the gravitational
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effects. This implies that ρ  can be taken as constant everywhere in the equation of
motion except in the term with external force.

Thus, within the framework of the Boussinesq approximation, the fundamental
equations governing the present problem take the following form:
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The governing equations (13)–(19) yield the following initial stationary state solu-
tions:

(u, v, w) = (0, 0, 0),

T = zT 10 β− ,

C = zC 20 β− ,
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1β  is the maintained uniform adverse temperature gradient,

d
CC −

= 0
2β  is the uniform favourable concentration gradient.

Let ),,(,,,),,,(, zyx hhhpwvu δφθδρ denote the perturbations in the density ρ , the

velocity (0, 0, 0), the temperature T, the concentration C, the pressure P and the mag-

netic field H
r

, respectively. Then the linearized perturbation equations are given by:
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Since the fluid under consideration is confined between two horizontal planes z = 0
and z = d, the variables must satisfy certain boundary conditions on them. Thus, the
boundary conditions on zhw and,, φθ  are given by:

φθ === 0w on both boundaries,
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We shall now investigate the stability of the system by analyzing an arbitrary per-
turbation in a complete set of normal modes individually. For the problem in hand, the
analysis can be made in terms of two-dimensional periodic waves of assigned num-
bers. Thus, to all quantities describing the perturbations we ascribe a dependence on x,
y and t of the form
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where kx, ky are the wave numbers along the x- and y-directions, respectively,
22
yx kkk +=  is the resultant wave number and n is the growth rate which is, in gen-

eral, a complex constant.
Making use of expression (31′), the system of equations (21)–(30) yield the fol-

lowing linearized perturbation equations:
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Multiplying equation (33) by ikx and (34) by iky, adding the resulting equations and
making use of equations (32) and (41), we have
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Further equations (36), (37), (40) can be written as
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We shall now introduce the non-dimensional quantities defined by
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Using the above non-dimensional quantities, omitting caps and dashes for simplic-
ity, the system of equations (42)–(45) assume the following non-dimensional forms:
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The boundary conditions (31) in view of (31′) and (46′) assume the following
form:

φθ === 0w on both boundaries,
02 =wD on a tangent stress-free boundary everywhere,  (51)

0=Dw on a rigid boundary,
0=zh on both boundaries if the regions outside the fluid

are perfectly conducting,
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The meanings of symbols from physical point of view are as follows:
z is the vertical coordinate,
d/dz is the differentiation along the vertical direction,
a2 is the square of horizontal wave number,
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S =  is the Soret number,

φ  is the concentration,
θ  is the temperature,
p is the complex growth rate,
w is the vertical velocity,
hz is the vertical magnetic field.
In equations (47)–(50), z is real independent variable such that 0 ≤ z ≤ 1, D =

d/dz is differentiation w.r.t. z, a2 is a constant, σ > 0 is a constant, 1σ  > 0 is a con-
stant, τ  > 0 is a constant, RT and RS are the positive constants for the Veronis’ con-
figuration and the negative constant for Stern’s configuration, p = pr + ipi is a com-
plex constant in general such that pr and pi are real constants and as a consequence
the dependent variables w(z) = wr(z) + iwi(z), )(zθ  = )(zrθ + )(zi iθ  and )(zφ  =

)(zrφ  + )(zi iφ  are complex valued functions (and their real and imaginary parts are
real valued).



A characterization theorem in hydromagnetic convection 33

We now prove the following theorems:

Theorem 1: If ( p, w, θ, φ, hz), p = pr + ipi, pr ≥ 0 is a solution of equations (47)–
(50) together with boundary conditions (51) with RT > 0, RS > 0 and
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The system of equations (47)–(50) together with boundary conditions (51), upon
using the transformation as defined above, takes the following form:
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02 =wD on a tangent stress-free boundary everywhere,

0=Dw on a rigid boundary,
0=zh on both boundaries if the regions outside the fluid

are perfectly conducting,

⎭
⎬
⎫

==
=−=
0at
1at

zahDh
zahDh

zz

zz if the regions outside the fluid are insulating,

where

A
DSk

A
SDk TTTT −=+= 1,1 21

τ  are positive constants,

TT

TTST
S

TT

TSTT
T DSBA

DRARBSR
DSBA

SRBRADR
−

++
=′

−
++

=′
))((,))((  are, respectively, the

modified thermal Rayleigh number and the modified concentration Rayleigh number.
The sign tilde has been omitted for simplicity.

Multiplying equation (57) by *
zh  (the complex conjugate of hz), integrating the re-

sulting equation over the range of z by parts a suitable number of times, and making
use of the boundary conditions (58) we arrive at

∫∫∫ −=+++
1

0

*
1

0

21
1

0

222 ||)||||( zzzz DhwdzhpdzhaDhaM
σ
σ , (59)

where 0})||()||({ 1
2

0
2 ≥+= zz hhM .

Equating the real part of equation (59), we obtain

dzhpdzhaDhaM z
r

zz ∫∫ +++
1

0

21
1

0

222 ||)||||(
σ
σ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫ dzDhw z

1

0

*ofpartReal

dzDhw z∫≤
1

0

*

∫≤
1

0

|||| dzDhw z

(58)
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2/11

0

2

2/11

0

2 ||||
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤ ∫∫ dzDhdzw z  (using Schwartz inequality). (60)

Since pr ≥ 0, therefore from inequality (60) we have
2/11

0

2

2/11

0

2
1

0

2 ||||||
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

< ∫∫∫ dzDhdzwdzDh zz  or ∫∫ <
1

0

2
1

0

2 |||| dzwdzDhz . (61)

Using inequality (61), it follows from inequality (60) that

.||)|||(|
1

0

2
1

0

222 ∫∫ <+ dzwdzhaDh zz (62)

Since w(0) = 0 = w(1), therefore using the Rayleigh–Ritz inequality [9], we get

∫∫ <
1

0

2
2

1

0

2 ||
π
1|| dzDwdzw . (63)

It follows from inequalities (62) and (63) that

dzDwdzhaDh zz ∫∫ <+
1

0

2
2

1

0

222 ||
π
1)|||(| ∫ +<

1

0

222
2 )|||(|
π
1 dzwaDw

or

∫∫ ′++
1

0

22
1

0

222
1 ||)|||(| dzaRdzhaDhQ szz φσσ

∫∫ ′++<
1

0

22
1

0

222
2

1 ||)|||(|
π

dzaRdzwaDwQ
s φσσ . (64)

Multiplying equation (56) by the complex conjugate of equation (56) and inte-
grating by parts over the vertical range of z for an appropriate number of times and
making use of the boundary conditions (58) we have

∫∫ ++++
1

0

2222
2

1

0

2422222
2 )|||(|2)||||2|(| dzaDkpdzaDaDk r φφφφφ

∫∫ =+
1

0

2
2

1

0

2
2

2

||1|||| dzwdzp
τ

φ
τ

. (65)

Since pr ≥ 0, therefore from equation (65) it follows
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∫∫ <++
1

0

2
2
2

2

1

0

242222 ||1)||||2|(| dzw
k

dzaDaD
τ

φφφ . (66)

Since φ (0) = 0 = φ (1), therefore using the Rayleigh–Ritz inequality [9] we have

∫∫ <
1

0

2
1

0

22 ||||π dzDdz φφ

and also

∫∫ ≤
1

0

22
1

0

24 ||||π dzDdz φφ  (using the Schwartz inequality). (67)

It follows from inequalities (66) and (67) that

dzw
k

dza ∫∫ <+
1

0

2
2
2

2

1

0

2222 ||1||)π(
τ

φ ,

or

∫∫ <
+ 1

0

2
2
2

22

1

0

2
2

222

||1||)π( dzw
ka

dz
a

a
τ

φ ,

or

dzw
k

dza ∫∫ <
1

0

2
2
2

22

1

0

22 ||
π4

1||
τ

φ ,

since the minimum value of 2

222 )π(
a

a+  for a2 > 0 is 4π2.

Hence the following inequality results from (63)

dzDw
k

dza ∫∫ <
1

0

2
2
2

24

1

0

22 ||
π4

1||
τ

φ dzwaDw
k ∫ +<

1

0

222
2
2

24 )|||(|
π4

1
τ

or

dzwaDw
k

RdzaR s
s ∫∫ +

′
<′

1

0

222
2
2

24

1

0

22 )|||(|
π4

||
τ
σφσ . (68)

Now from inequalities (64) and (68), we obtain
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∫∫ ′++
1

0

22
1

0

222
1 ||)|||(| dzaRdzhaDhQ szz φσσ

∫ +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
+<

1

0

222
2
2

422
1 )|||(|

π4π
dzwaDw

k
RQ s

τ
σσ  . (69)

Therefore, if

,1
π4π 2

2
422

1 ≤
′

+
k

RQ s

τ
σσ

then from inequality (69) we arrive at

∫∫∫ ′++>+
1

0

22
1

0

222
1

1

0

222 ||)|||(|)|||(| dzaRdzhaDhQdzwaDw szz φσσ , (70)

and this completes the proof of the theorem.
We note that the left-hand side of equation (70) represents the total kinetic energy

associated with a disturbance, while the right-hand side represents the sum of its total
magnetic and concentration energies, and Theorem 1 may be stated in the following
equivalent form:

At the neutral or unstable state in the hydromagnetic double-diffusive convection
problem of the Veronis’ type coupled with cross diffusions, the total kinetic energy
associated with a disturbance is greater than the sum of its total magnetic and concen-
tration energies in the parameter regime

1
π4π 2

2
422

1 ≤
′

+
k

RQ s

τ
σσ

and this result is uniformly valid for any combination of dynamically free or rigid
boundaries that are either perfectly conducting or insulating.

Theorem 2: If ( p, w, θ, φ, hz), p = pr + ipi, pr ≥ 0 is the solution of equations (47)–
(50) together with boundary conditions (51) with RT < 0, RS < 0, and

1
π4

||
π 2

1
42

1 ≤
′

+
k

RQ T σσ ,

then

∫∫∫ ′++>+
1

0

22
1

0

222
1

1

0

222 ||||)||||()||||( dzaRdzhaDhQdzwaDw Tzz θσσ . (71)
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Proof. Similar to that of Theorem 1.
We note that the left-hand side of equation (71) represents the total kinetic energy asso-

ciated with a disturbance, while the right-hand side represents the sum of its total magnetic
and thermal energies, and Theorem 2 may be stated in the following equivalent form:

At the neutral or unstable state in the hydromagnetic double-diffusive convection
problem of the Stern’s type coupled with cross diffusions, the total kinetic energy
associated with a disturbance is greater than sum of its total magnetic and thermal
energies in the parameter regime

1
π4

||
π 2

1
42

1 ≤
′

+
k

RQ T σσ

and this result is uniformly valid for any combination of dynamically free or rigid
boundaries that are either perfectly conducting or insulating.

3. CONCLUSIONS

In the present paper, the hydromagnetic double-diffusive convection problem of
the Veronis’ and Stern’s type configuration coupled with cross diffusion is considered.
The investigation of cross diffusion effect is motivated by its interesting complexities
as a double-diffusive phenomenon which has its importance in various fields such as
high-quality crystal production, oceanography, production of pure medication, solidi-
fication of molten alloys, exothermally heated lakes and magmas. The analysis made
brings out the following main conclusions:

(i) At the neutral or unstable state in the magnetohydrodynamic double-diffusive
convection problem of the Veronis’ type coupled with cross diffusion, the total kinetic
energy associated with a disturbance is greater than the sum of its total magnetic and
concentration energies in the parameter regime

1
π4π 2

2
422

1 ≤
′

+
k

RQ s

τ
σσ

and this result is uniformly valid for any combination of dynamically free or rigid
boundaries that are either perfectly conducting or insulating.

(ii) At the neutral or unstable state in the hydromagnetic double-diffusive convec-
tion problem of the Stern’s type coupled with cross diffusions, the total kinetic energy
associated with a disturbance is greater than sum of its total magnetic and thermal
energies in the parameter regime

1
π4

||
π 2

1
42

1 ≤
′

+
k

RQ T σσ
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and this result is uniformly valid for any combination of dynamically free or rigid
boundaries that are either perfectly conducting or insulating.
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