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Abstract: The effect of horizontal magnetic field is considered on the stability of stratified visco-
elastic Walters’ (Model B′) fluid in the presence of rotation. In contrast to the Newtonian fluids, the
system is found to be unstable for small wavelength perturbations for the case of stable stratification.
It is also found that the magnetic field stabilizes the certain wave-number band for unstable stratifi-
cation in the presence of rotation and this wave-number range increases with the increase in magnetic
field and decreases with the increase in kinematic visco-elasticity.

LIST OF SYMBOLS

Ω
r

(Ω , 0, 0) rotation vector having components (Ω, 0, 0),
ρ density of fluid,
μ coefficient of viscosity,
μ′ coefficient of visco-elasticity,
μe magnetic permeability,
∂ curly operator,
∇ del operator,
β a constant,
π constant value,
δ perturbation in the respective physical quantity,
Φ the angle between the horizontal component of wave number kx and wave number k,
ν kinematic viscosity (μ/ρ),
ν ′ kinematic visco-elasticity (μ′/ρ),
i square root of (–1),
p pressure,
gr (0, 0, –g) acceleration due to gravity,
H
r

(H, 0, 0) magnetic field vector having components (H, 0, 0),
δρ perturbation in density ρ (z),
δp perturbation in pressure p(z),
ur (u, v, w) perturbations in fluid velocity ur (0, 0, 0),
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h
r

(hx, hy, hz) perturbations in magnetic field H
r

(H, 0, 0),
kx, ky wave numbers in the x and y directions, respectively,
k = 2/122 )( yx kk + wave number of the disturbance,

n growth rate of the disturbance,
2
AV square of the Alfve’n velocity ( 2

AV  = μ e H 2/4πρ),
d depth of the fluid layer,
ρ 0, μ 0, ,0μ′  ν 0, 0ν ′ constants,
m an integer.

1. INTRODUCTION

The character of the equilibrium of an inviscid, incompressible fluid having vari-
able density in the vertical direction was investigated by RAYLEIGH [1]. He demon-
strated that the system is stable or unstable according as the density decreases every-
where or increases anywhere. A comprehensive account of the Rayleigh–Taylor
instability was given by CHANDRASEKHAR [2] wherein the effects of uniform rotation
with an angular velocity Ω

r
 about the vertical and uniform horizontal magnetic field,

separately, were also treated. REID [3] studied the effects of surface tension and vis-
cosity on the stability of two superposed fluids. BELLMAN and PENNINGTION [4] in-
vestigated in detail the combined effects of viscosity and surface tension on Taylor
instability. GUPTA [5] again studied the stability of a horizontal layer of an electrically
conducting fluid with continuous density and viscosity stratification in the presence of
a horizontal magnetic field. The effect of a vertical magnetic field on the development
of the Rayleigh–Taylor instability was considered by HIDE [6].

Generally the magnetic field has a stabilizing effect on the instability, but there are
also a few exceptions. For example, KENT [7] has studied the effect of horizontal
magnetic field which varies in the vertical direction on the stability of parallel flows
and has shown that the system is unstable under certain conditions, while in the ab-
sence of magnetic field the system is known to be stable.

In all the above studies, the fluid has been assumed to be Newtonian. With the
growing importance of non-Newtonian fluids in modern technology and industries, the
investigation of such fluids is desirable. There are many elasto-viscous fluids that cannot
be characterized by Maxwell’s or Oldroyd’s constitutive relations. One such class of
fluids is Walters’ (Model B′) fluid. WALTERS [8] proposed a theoretical model for such
elasto-viscous fluids. Many other research workers have paid their attention to the study
of Walters’ (Model B′) fluids. The behaviour of the mixture of polymethyl methacrylate
and pyridine at 25 °C containing 30.5 grams of polymer per litre is very similar to that of
Walters’ (Model B′) viscoelastic fluid (WALTERS [9]). The fluids of this class are used in
the manufacture of the parts of space craft, aeroplanes, tyres, belt conveyors, ropes,
cushions, seats, foams, plastics, engineering equipments, etc.
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SHARMA and KUMAR [10] studied the effects of the presence of a transverse mag-
netic field on the stability of two superposed Walters’ (Model B′) viscoelastic liquids.
SHARMA and KUMAR [11] also studied the Rayleigh–Taylor instability of stratified
Walters’ (Model B′) fluid in the presence of a variable horizontal magnetic field and
suspended particles. The Coriolis force also affects significantly the stability of geo-
physical phenomenon. Keeping in mind the conflicting tendencies of magnetic field
and rotation while acting together, we set out to study the combined effect of magnetic
field and rotation on the stability of stratified elasto-viscous Walters’ (Model B′) fluid.

2. FORMULATION OF THE PROBLEM
AND PERTURBATION EQUATIONS

The initial stationary state, whose stability we wish to examine, is that of an in-
compressible, heterogeneous infinitely extending elasto-viscous Walters’ (Model B′)
fluid of variable density, kinematic viscosity and kinematic viscoelasticity so that the
free surface is almost horizontal. The fluid is acting by the gravity force gr (0, 0, –g),
a uniform horizontal rotation Ω

r
(Ω, 0, 0) and a uniform horizontal magnetic field

H
r

(H, 0, 0). The character of the equilibrium of this stationary state can be determined
by disturbing the system slightly and then, following its further evolution.

Let ρ, μ, μ′, p and ur (u, v, w) denote, respectively, the density, the viscosity, the
viscoelasticity, the pressure and the velocity of fluid (initially zero). Then the equa-
tions expressing the conservation of momentum, mass, incompressibility and Max-
well’s equation for the elasto-viscous Walters’ (Model B′) fluid are
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where μe, the magnetic permeability, is assumed to be constant.
Equation (3) represents the fact that the density of a particle remains unchanged as

we follow it with its motion.
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Let δρ, δp, ur  (u, v, w) and h
r

(hx, hy, hz) denote, respectively, the perturbations in
the density ρ(z), the pressure p(z), the velocity ur (0, 0, 0) and the horizontal magnetic
field H

r
(H,0,0).

Then the linearized perturbation equations become
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Analyzing the disturbances in normal modes, we seek the solutions whose depend-
ence on x, y, z and time t is given by

f(z) exp (ikx x + iky y + nt) , (11)

where f (z) is some function of z; kx, ky are the wave numbers in the x and y directions,
k = 2/122 )( yx kk +  is the resultant wave number and n is the growth rate of the distur-
bance which is, in general, a complex constant.

Equations (6)–(10), using expression (11), in the Cartesian coordinates become

ukDnpkinu x )()( 22 −′−+−= μμδρ , (12)
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e

y ρμμμδρ 2)(
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Huiknh xx = , (18)

Hviknh xy = , (19)
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Hwiknh xz = , (20)

where D stands for d/dz.
Eliminating u, v and δp between equations (12)–(14) and using equations (15)–

(20), after little algebra, we arrive at
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where ,μ/ρν =  ρμν /′=′  and 2
AV  = ρμ π4/2He  (square of the Alfve′n velocity).

3. THE CASE OF EXPONENTIALLY VARYING STRATIFICATIONS (ky = 0)

Let us assume the stratifications in density, viscosity, viscoelasticity of the forms
zzz eee βββ μμμμρρ 000 ,, ′=′==  , (22)

where 000 ,, μμρ ′  and β  are constants, and therefore, the kinematic viscosity
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are constant everywhere.
Using stratifications of the form (22), equation (21) transforms to
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Considering the case of two free boundaries, we must have
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w = D2w = 0    at    z = 0    and   z = d. (24)

The appropriate solution of equation (23) satisfying the above boundary conditions
is

w = A sin 
d

zmπ , (25)

where m is an integer and A is a constant.
Inserting the value of w from equation (25) into equation (23), we obtain the dis-

persion relation

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+′−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++′−+′−

1

22

10
1

2
222

1
2
0

2
1010

32
10

4 4)1(2])1(2[])1([
L
ΩkL

L
kgVkLnLLnLn x

Ax νβνννν

02
1

2
2222

1

2
22

10 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

L
kgVkVk

L
kgVkLn AxAxAx

ββν , (26)
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Equation (26) is biquadratic in n, therefore, it must give four roots, and is the dis-
persion relation representing the effects of rotation and horizontal magnetic field on
the stability of stratified (exponentially varying density) elasto-viscous Walters’
(Model B′) fluid in non-porous medium.

4. RESULTS AND DISCUSSION

(a) Case of stable stratification (i.e. β < 0). If β < 0 and )1( 10Lν ′− > 0, then equa-
tion (26) does not admit of any positive real root nor complex root with positive real
part and, therefore, the system is stable for disturbances of all wave-numbers. How-
ever, it is clear that the system is unstable for )1( 10Lν ′− < 0.

Thus for stable stratification, the system is stable for disturbances of all wave-
numbers satisfying
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and unstable otherwise. Thus the system becomes destabilized for small wavelength
perturbations even if it is a bottom heavy (stable) configuration. This stands in contrast
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to the Newtonian fluids where the system is always stable for stable stratification
(CHANDRASEKHAR [2]). The condition for the system to be unstable is

)1( 10Lν ′−  < 0,

i.e.

2222

2

0 πmdk
d
+

>′ν . (28)

Numerical model example. For the depth of the fluid layer d = 6 cm, the wave
number k = 0.2, the integer m = 1, the condition for instability

2222

2

0 πmdk
d
+

>′ν

gives 0ν ′  > 3.6, i.e. the fluid layer for the case of stable stratification will be unstable if
kinematic viscoelasticity of the fluid will be greater than 3.6 cm2/sec. Similarly, for d
= 6 cm, k = 0.5, m = 1, the condition for instability leads to 0ν ′  > 2.0; and for d = 6 cm,
k = 1.0, m = 1, it gives 0ν ′  > 1.0 Thus, we have seen that as viscoelasticity increases
a wider range of wave numbers become unstable.

‐40

‐20

0

20

40

60

80

100

120

140

160

180

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

k

n r

ν₀'=0.5

ν₀'=1.0

ν₀'=2.0

ν₀'=3.0

ν₀'=4.0

Fig. 1. Variation of nr (positive real value of n) with wave number k for fixed permissible values
of β = –2, m = 1, d = 6 cm, ν0 = 4, Ω = 0.1 rotation per second, g = 980 cm/sec2, kx = k cos 45° and

2
AV  = 15 for five values of 0ν ′  = 0.5, 1.0, 2.0, 3.0, 4.0
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We have examined the behaviour of growth rates with respect to the kinematic vis-
coelasticity 0ν ′  satisfying equation (26) numerically for the case of stable stratifica-
tion. Figure 1 shows the variation of the growth rate nr (positive real value of n) with
respect to the wave number k satisfying equation (26), for the fixed permissible values
of β = –2, m = 1, d = 6 cm, ν0 = 4, Ω = 6 rotations/min, g = 980 cm/sec2, 2

AV  = 15, kx =
kcos45°, for five values of 0ν ′  = 0.5, 1.0, 2.0, 3.0 and 4.0, respectively, for the wave-
number range, 2 ≤ k ≤ 1.6. The plots show that kinematic viscoelasticity 0ν ′  has a de-
stabilizing effect on the system and as viscoelasticity increases a wider range of wave
numbers become unstable. It is clear from figure1 that for 0ν ′  = 3 and 4, the system is
unstable for the whole range of wave numbers. For 0ν ′  = 2, the system is unstable for
k > 0.8 and finally for 0ν ′  = 0.5, the system is unstable for k > 1.2. Thus figure 1 con-
firms the earlier result that it is an increase in the viscoelasticity that increases the
wave-number band which is unstable.
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Fig. 2. Variation of nr (positive real value of n) with wave number k for fixed permissible values of
β = –2, m = 1, d = 6 cm, ν0 = 4, Ω = 0.1 rotation per second,

g = 980 cm/sec2, kx = k cos 45° and 2
AV  = 15 for five values of 0ν ′  = 0.5, 1.0, 2.0, 3.0, 4.0

In figure 2, we have plotted the variation of nr (positive real value of n) for the
same set of various parameters for the wave number range 1 ≤ k ≤ 4. It is clear from
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figure 2 that as the wave number increases, the system is unstable even for lesser vis-
coelastic fluids which confirms the analytic result drawn earlier that the system gets
destabilized for small wavelength perturbations.

 (b) Case of unstable stratification (i.e. β > 0). Based on equation (26) it can be
inferred that if
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the constant term is negative and, therefore, has at least one positive real root. Hence
the system is unstable for all wave numbers satisfying the inequality
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equation (26) does not admit of any positive real root nor complex root with positive
real part and therefore the system is stable. The magnetic field, therefore, stabilizes
potentially unstable stratification for the wave-number band
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Also, it is clear that the wave-number range, for which the potentially unstable
system gets stabilized, increases with the increase in magnetic field and decreases with
the increase in kinematic viscoelasticity. All long wavelength perturbations satisfying
(30) remain unstable and are not stabilized by magnetic field.

We have examined the behaviour of growth rates with respect to the kinematic vis-
cosity ν and the kinematic viscoelasticity ν ′  satisfying equation (26) numerically.
Figure 3 shows the variation of the growth rate nr (positive real value of n) with re-
spect to the wave number k satisfying equation (26), for the fixed permissible values
of β = 2, m = 1, d = 6 cm, ν0 = 4, Ω = 6 rotations/min, g = 980 cm/sec2, 2

AV  = 15, kx =
kcos45°; for four values of 0ν ′  = 0.5, 1.0, 1.5 and 2.0, respectively, for the wave-
number range 0.2 ≤ k ≤ 1.6. The graph shows that the kinematic viscoelasticity 0ν ′  has
a destabilizing effect for low wave numbers and this destabilizing influence increases
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with the increase in the kinematic viscoelasticity 0ν ′  for low wave numbers. This sup-
ports our conclusions drawn mathematically that the long wavelength perturbations
remain unstable. However, as the wave-number range increases, the system gets stabi-
lized with the increase in kinematic viscoelasticity 0ν ′  as is evident from figure 4 for
the wave-number range 1 ≤ k ≤ 4.
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Fig. 3. Variation of nr (positive real value of n) with wave number k for fixed permissible values of
β = 2, m = 1, d = 6 cm, ν0 = 4, Ω = 6 rotations per minute, g = 980 cm/sec2, kx = kcos 45° and
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Fig. 4. Variation of nr (positive real value of n) with wave number k for fixed permissible values of
β = 2, m = 1, d = 6 cm, ν0 = 4, Ω = 6 rotations per minute, g = 980 cm/sec2, kx = kcos 45° and
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Fig. 5. Variation of nr (positive real value of n) with wave number k for fixed permissible values of
β = 2, m = 1, d = 6 cm, 0ν ′  = 1, Ω = 6 rotations per minute, g = 980 cm/sec2,

kx = kcos 45° and 2
AV  = 15 for three values of ν0 = 2, 4 and 6
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Fig. 6. Variation of nr (positive real value of n) with wave number k for fixed permissible values of
β = 2, m = 1, d = 6 cm, 0ν ′  = 1, Ω = 6 rotations per minute, g = 980 cm/sec2,

kx = kcos 45° and 2
AV  = 15 for three values of ν0 = 2, 4 and 6

Figure 5 shows the variation of the growth rate nr (positive real value of n) with re-
spect to the wave number k for the fixed permissible values of β = 2, m = 1, d = 6 cm,

ν0 = 2
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0ν ′  = 1, Ω = 6 rotations/min, g = 980 cm/sec2, 2
AV  = 15, kx = kcos45°; for three values

of 0ν  = 2, 4 and 6, respectively, for the wave-number range 0.2 ≤ k ≤ 1.2. The
graph shows that kinematic viscosity 0ν  has a stabilizing effect for the low wave-
number range with the increase in kinematic viscosity. However, as the wave-
number range increases, the the kinematic viscosity has a destabilizing effect with
the increase in kinematic viscosity as is clear from figure 6 for the wave-number
range 2 ≤ k ≤ 4.

5. CONCLUSIONS

The principle conclusions drawn from the analysis of the present paper are as fol-
lows:

(i) In contrast to the Newtonian fluids, the system gets destabilized for Walters’
(Model B′) fluid for small wavelength perturbations even if it is a bottom heavy con-
figuration.

(ii) For stable stratification, as the viscoelasticity increases, the wave-number band
for which the system becomes unstable increases.

(iii) Magnetic field stabilizes certain wave-number range and this range increases
with the increase in magnetic field.

(iv) The long wavelength perturbations remain unstable (for potentially unstable
stratification) and are not stabilized by magnetic field.
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