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Abstract: The paper presents the procedure of calculating reliability index for a sheet pile wall
loaded with a horizontal force. The procedure is carried out with the equations representing the
ultimate and serviceability limit states. The calculation of the reliability index related to bearing
capacity limit state was based on a response surface made of the largest bending moments in
a sheet pile wall, while the reliability index of serviceability limit state was obtained by forming
another response surface involving the maximum horizontal displacements of pile heads. The
global reliability index was calculated with the use of the appropriate equations derived from
system reliability analysis.

1. PRELIMINARY ASSUMPTIONS

Limit state design, which is in common use nowadays, involves the calculation of
limit states of bearing capacity and serviceability. These calculations may be com-
bined with reliability analysis resulting in probabilistic safety measures such as the
probability of failure or the equivalent reliability index [1]. This kind of approach will
be presented in this paper.

The calculations are made for a wall of reinforced concrete piles arranged in the
form of a single row.

It has been decided that of all possible kinds of bearing capacity limit states, only
the greatest bending moment, which may appear along the whole pile from its head to
the base, will be analysed. The maximum bending moment cannot exceed the limit
value M, resulting from the adopted reinforcement degree. Exceeding the limit value
M,y is considered a failure state. As regards the serviceability limit states, the hori-
zontal displacement of pile head has been chosen from various kinds of these states.
According to serviceability limit state principles, such a displacement cannot exceed
a defined allowable value u,;;. As in the previous case, exceeding the value u,, is con-
sidered to be a failure state.

As a result of random variability of soil properties, these conditions assume the
form of two random events:
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where M stands for the bending moment at any cross-section of a pile, and u is a hori-
zontal displacement of pile head. Failure-free state means that conditions (1) must be
fulfilled. Taking account of the reliability analysis, it is then a two-component serial
system and the problem consists in estimating the probability of failure:

PIM <M ) N (u<uy)]. ()
In a general case, the resulting failure probability
Pr=1=P[(M <M )" (u<uy)]=P{M>M ) u>uy)} (3)

is higher than the probabilities of failures obtained in the case where the conditions of
bearing capacity and serviceability limit states are not met separately.

2. NUMERICAL ANALYSIS OF THE WORK OF
A HORIZONTALLY-LOADED SHEET PILE WALL

The aim of a numerical analysis based on the computational model shown in fig-
ure 1 was to obtain a set of maximum bending moments in the sheet pile wall and of
pile head horizontal displacements for the given values £, and £, of Young’s modulus
in the upper and middle layers of soil, respectively. These values will make it possible
to find the response surfaces for the bending moment and for displacement. The com-
putational FEM model presented in figure 2 incorporates three layers of soil.

In the first two layers, 4 m deep each, the elastic moduli £, and £, are treated as
random variables. The third layer of a good quality ground is assumed to be homoge-
neous with non-random elastic modulus £; (see figure 1). The pile sheet wall with the
mean thickness of 0.44 m reaches the depth of 9 m and is transversely loaded with the
force P = 44 kN/m, applied to the pile head. In figure 2, two vertical lines near the
wall limit the area with a higher number of triangular six-node finite elements.

Two assumptions have been imposed on the numerical model. The first is that
the first layer is completely saturated, while the second assumption is that the load-
ing is repeatedly applied and acts for a short period of time. The assumption that the
loading acts in an almost pulsing way in saturated soil makes it possible to assume
full contact between the pile and the surrounding soil on the left-hand side of the
wall where the tensile stresses appear. The calculations confirm that the value of these
tensile stresses do not exceed 0.025 MPa, i.e. 1/4 atmospheric pressure. If the load-
ing in saturated soil changes quickly, the pile movement causes suction to act on the
left-hand side of the wall. This justifies the assumption of a complete connection
between the soil and the sheet pile wall.
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Fig. 1. Sheet pile wall embedded in a layered soil and subjected to horizontal force

Fig. 2. A computational finite element model
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Fig. 3. Compressive stresses in extreme pile fibres
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Fig. 4. Horizontal displacement stresses along sheet pile wall
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The curve in figure 3 presents the compressive stress o, in the extreme fibers of the
piles. Relation

M=Wo, 4)

enables the calculation of bending moments, where W is the bending index corre-
sponding to one linear metre of the wall: W = 1-(0.44)*/6. Figure 4 presents the hori-
zontal displacements of the wall. The maximum displacement corresponds to the dis-
placement at the pile head.

The characteristics of random variables corresponding to material properties used
in the numerical computations are gathered in table 1.

Table 1

Expected values of elastic constants and standard deviations of subsoil computational model

Mean values | Values of | Standard deviations Probability
Layer types of Young’s Poisson’s |of Young’s modulus| distributions of Young’s

modulus £ (MPa) | ratio v o (MPa) modulus £
Upper layer 4 0.30 0.45 lognormal
Middle layer 20 0.30 3.00 lognormal

Bottom layer 80 0.35 0 deterministic

Concrete sheet pile wall 28 000 0.16 0 deterministic

The computations were carried out with the use of the finite element software
PHSESES2, specially designed for analysing the stresses and displacements of under-
ground structures in plain strain problems.

3. ULTIMATE AND SERVICEABILITY LIMIT STATES OF
A PILE SHEET WALL

According to Polish Standard [2] the correctness of the structure designed should
be checked through analysing the limit states of bearing capacity and serviceability.
As the pile sheet wall will be subjected to bending, the requirement of not exceeding
the bearing capacity in the most loaded cross-section implies the first inequality in (1).
The values of the ultimate bending moment M,;; depend on the percentage of rein-
forcement in a particular cross-section (table 2). These values are determined with
a simplified method that is based on normative correlations for the cross-section
height 2 = 0.44 m, the concrete cover thickness a = 0.05 m and the design plasticity
limit of steel plasticity f; =210 MPa.
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Table 2
Values of boundary moment depending on reinforcement percentage

Reinforcement Ay Ag My
percentage (%) (cm*/m) (cm*/m) (kNm/m)

0.50 22.00 11.00 78.54

0.55 24.20 12.10 86.40

0.60 26.40 13.20 94.25

0.65 28.60 14.30 102.10
A, — the reinforcement surface, 4, — the surface of tensioned reinforcement, M, — the

maximum value of bending moment.

The condition of not exceeding the boundary value of the horizontal displacement
uay = 1.1 cm by pile heads produces the second inequality in formula (1).

In the next section of this paper, it will be assumed that the bending moment M and
the horizontal displacement u are the functions of two random values of the elastic
modulus £ and the random horizontal force P.

4. RESPONSE SURFACES FOR BENDING MOMENT
AND DISPLACEMENT

In order to obtain the reliability measures, the functional relationships between
‘input’ random variables (the values of elastic modulus) and those obtained ‘at the out-
put’ of the problem (bending moment, head displacement) should be known. Unfortu-
nately, no explicit functional relationships between these quantities are known and it is
only possible to define, by means of finite element method, the set of relevant physical
quantities for the adopted values of material constants. In this situation, the response
surface method was used to calculate the reliability indices. The method generally con-
sists in approximating an unknown function, for which only a certain amount of values is
known, with an adequately adopted function. The choice of approximating function may
be based on the results of experimental research as well as on the results of numerical
calculations, e.g. the results obtained by finite element method. A detailed information
can be found in numerous monographs, e.g. that by MYERS and MONTGOMERY |[3].

This paper uses an iterative algorithm based on nonlinear regression and the Mar-
quardt method, adapted by BAUER and PULA [4]. In the case discussed, the response
surface has the form of a second degree polynomial in two variables, i.e.:

f(E,E)= 4—];(17, +b,E, +b,E, +b,E} +bE; +bE\E,)) + ¢, ()

where ¢ is the random variable defining a fitting error (cf. BAUER and PULA [4]), E|,
E, are random values of Young’s modulus and b—bs — the coefficients of the desired
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response surfaces f. The function f was determined fivefold — once in the case of ap-
proximating the displacement u and four times — for approximating the maximum
bending moment M, depending on the boundary value (c.f. table 2). The values B;—Bs
of coefficients b;—bs obtained in particular cases are presented in table 3.

Table 3

Coefficients defining particular response surfaces

Co;’ig‘;;:;f u=1.1 Miguna = 78.54 | Myoung = 86.40 | Mipgung = 94.25 | Myoyng = 102.1
surfaces (cm) (kNm/m) (kNm/m) (kNm/m) (kNm/m)
B, 2.556 115.77 132.851 136.391 148.8
B, ~0.405 23.7828 325212 333744 3727
B, 0.0472 1.61518 1.33108 1.13407 0.6371
B, 0.0273 175618 3.03030 311103 3.722
B, 0.616E-3 ~0.02001 —0.0148148 | —0.0116667 | —0.4866E-2
Bs 0.324E-2 ~0.022728 ~0.674 E-9 0.016661 0.04807

5. COMPUTING RELIABILITY MEASURES

Reliability is calculated in two steps. The first step is to calculate the probabilities
of failure

Pr, = PIM > M (6)

connected successively with four values M, of boundary bending moment and the
reliability indices f; related to these probabilities by the following equation

Pr =P (=B), (7

where @, is the cumulative normal distribution function.
The second step is to calculate the probability

Pr, = Plu>uy; ®)

connected with exceeding allowable horizontal displacements and the reliability index
p- related to this probability (equation (7)). These measures were calculated by means
of the SORM method, widely used in the reliability theory (cf. HOHENBICHLER et al.
[5] or PULA [6]). The reliability indices 1 corresponding to the probability (6) of not
meeting the condition of ultimate limit state and the reliability indices /5, correspond-
ing to probability (8) of not meeting the condition of serviceability limit state can be
found in table 4.
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Table 4

Values of reliability indices depending on reinforcement percentage

Reinforcement

percentage (%) h P p
0.50 1.41 2.31 1.38
0.55 2.90 2.31 2.27
0.60 4.37 2.31 2.31
0.65 5.83 2.31 2.31

However, as mentioned in section 1, our aim was to determine the probability of
failure:

F=P{M>M ) @W>uy)}, ©)

and the global reliability index S related to this probability through equation (7). The
method for determining the global reliability index, one of the problems included in
system reliability analysis, is very briefly described below.

In practice, in order to fulfil the safety conditions, a structure must often meet
several various, often interrelated, criteria. Therefore one should adopt a model
whose structure is the system of components, each of them satisfying different fail-
ure criteria characterised by different limit state functions. These elements can form
a series system (like in the example discussed in this paper) — then the failure-free
operation of the whole system requires failure-free operation of all the elements.
The opposite of the system of components is a parallel system, where a lack of fail-
ure in one element is sufficient for the failure-free operation of the whole system.
A mixed system is a combination of the parallel and serial systems. In calculating
the probability of such a system it is usually necessary to estimate the probability of
the following event:

Fo =UMte;00 <0}, (10)

where g;; stands for the limit state function of the element #j. Therefore it is necessary
to estimate the probability of the union and intersection of events. If the events ana-
lysed are not mutually exclusive, the so-called Ditlevsen’s bounds are often applied
(DITLEVSEN [7]):

q

Zq: Z ax{P(F NF)}< ZP(F)

i=2 Jj=1

R
i=l >P(F)+Z{max{0 P(F)—- Z{P(F NF, )}H>max{P(F)}>0
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If the sum on the right-hand side of inequality (11) is higher than unity, the upper limit
is, of course, unity. As we can see, the use of inequality (11) requires calculating the prob-
abilities of intersections in the form of P(F; N F)). These probabilities can be estimated after
employing transformation for standard normal space. It can be proved that for two-dimen-
sional cumulative normal distribution function @, with mean (0, 0) and variance (1, 1)
and correlation coefficient between the components p, the following equality is valid:

P
D, (x, y, p) = By(N)Ly () + [ 4 (x, v, ), (12)
0

where ¢, stands for the density corresponding to @, (cf. [1]). This equality leads to
the following approximate formula:

P,

P(F, O F) = By (~B)Bo (=) + [ (=P8, 1), (13)

0

where p; stands for the coefficient of correlation between the random variables gi(X)
and gi(X), while g;, g; are limit state functions for the elements i and j, respectively,
and £ and £ — the corresponding reliability indices according to FORM method.

When applying the above-mentioned Ditlevsen’s bounds, the probability (9) corre-
sponding to four cases of reinforcement surfaces was calculated as well as the global
reliability indices § were listed in table 4.

6. FINAL REMARKS

When analysing the computation results of the reliability given found in table 4, one
can describe three different situations. The reliability indices in the first row of table 4
refer to the case of a relatively low value of boundary moment resulting from
a small percentage of reinforcement. The possibility of the system failure is connected
mostly with the probability of exceeding the condition of ultimate limit state with the
reliability index £ = 1.41. This probability of failure is slightly increased towards the
global probability of failure due to additional possibility of exceeding the condition of
serviceability limit state with the reliability index £, = 2.31, which produces the value
S =1.38 of the global reliability index. In the case presented in the second row of table 4,
the situation is opposite. The system failure chiefly does not meet the condition of serv-
iceability limit state. The increased value of boundary moment reduces the probability of
failure resulting from not meeting the condition of bearing capacity limit state, which is
reflected in the increase of reliability index to the value £ = 2.90, and only slightly re-
duces the value of global reliability index — from the value £, = 2.31 related to exceeding
the condition of serviceability limit state to the global value = 2.27.
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The third case, shown in rows 3 and 4 of table 4, is different. System failure is
chiefly caused by exceeding the condition of serviceability limit state, and the global
reliability index f has the same value as the coefficient f, = 2.31 related to service-
ability limit state. This means that there is practically no stochastic interaction between
the conditions of ultimate limit states and serviceability limit states. This situation
results from the fact that the failure area related to exceeding boundary moment lies
far from the origin of the coordinate system of standardized random variables of the
material constants £, and £,. One should note that the third case is the most advanta-
geous if a structural safety is taken into account.
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