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Abstract: The present study investigates the onset of 
penetrative convection in- duced by selective absorption 
of radiation in a magnetic nanofluid saturated 
porous medium. The influence of Brownian motion, 
thermophoresis, and magnetophoresis on magnetic 
nanofluid treatment is taken into consideration. The 
Darcy’s model is selected for the porous medium. We 
conduct a linear stability analysis to examine the onset 
of instability and evaluate the results for two different 
configurations, namely, when the layer is heated from 
below and when the layer is heated from above. The 
numerical investigations are carried out by applying the 
Chebyshev pseudospectral method. The effect of the 
porosity parameter E, parameter Y (represents the ratio of 
internal heating to boundary heating), Lewis number Le, 
concentration Rayleigh number Rn, Langevin parameter 
αL, width of nanofluid layer d, diffusivity ratio η, and 
modified diffusivity ratio NA  is examined at the onset 
of convection. The results indicate that the convection  
commences easily with an increase in the value of Y, Le, 
and NA  but opposite in the case with a decrease in the 
value of E, αL, η and d for both the two  configurations. 
The parameter Rn  advances the onset of convection when 
the layer is heated from below, while delays the onset of 
convection when the layer is heated from above.
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1  Introduction: 
Nanofluids are the liquids containing a suspension of 
nanoparticles (having a size typically in the range 1-100 
nm) in a base fluid. The base fluid can be an organic solvent 
or water, and the choice of base fluid depends on the 
applications for which the nanofluid is prepared. A wide 
range of applications for nanofluid can be found in several 
sectors including transportation, commercial, residential, 
industrial, and so on. Owing to the importance of 
nanofluids in these sectors, the area nanofluid convection 
in porous media attracted the attention of various 
researchers. A benchmark study of convective transport 
in nanofluid was organized by Buongiorno [1]. A new 
model was developed in his study, which consists of the 
effects of two important mechanisms, namely, Brownian 
diffusion and thermophoresis. There are several studies 
in which the phenomena related to the onset of nanofluid 
convection in porous media have been examined under 
different aspects. Using Buongiorno’s model, Nield and 
Kuznetsov [2] analytically studied the onset of convection 
in a layer of porous medium saturated by a nanofluid. 
The authors observed that the value of the critical 
thermal Rayleigh number depends on the distribution 
(i.e., top-heavy or bottom-heavy) of nanoparticles. They 
reported that the oscillatory convection may occur in 
case of a bottom-heavy nanoparticle distribution. Later, 
this problem was re-examined by the same authors for a 
revised set of boundary conditions [3]. In their extended 
work, the authors considered the nanoparticle fraction 
in a way such that the nanoparticle flux is zero on the 
boundaries. The authors pointed out that the oscillatory 
convection can no longer occur with the choice of new 
boundary conditions. Using these more realistic boundary 
conditions, Yadav et al. [4] analyzed the thermal instability 
of rotating nanofluids. The authors mentioned that the 
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model selected in their study is more realistic physically 
than those used in the previous studies (i.e., models 
with non-zero nanoparticle flux at boundaries). Different 
aspects of natural convection in porous media have been 
examined thoroughly by many researchers (see, e.g., Ref. 
[5–9]).

An experimental investigation of the onset of 
convection in a stably stratified fluid layer because of 
selective absorption of radiation was conducted by 
Krishnamurti [10]. The convection mechanism observed 
by Krishnamurti was a penetrative one, which was, 
stimulated by internal heating through absorption of 
radiation. Penetrative convection is a phenomenon 
that arises when buoyancy-driven motion penetrates 
into stratified layers [11]. In the experimental work, 
Krishnamurti considered a layer of water that contains 
a pH indicator known as thymol blue. This model of 
Krishnamurti was again investigated by Straughan [12] 
with the bounding surfaces being fixed as they will be 
in the experiment. The author reported that the results 
obtained in his study supports the work of Krishnamurti 
and the model developed by Krishnamurti is a very 
effective one. Hill [13] studied a modification of the system 
introduced by Krishnamurti [10] for a fluid-saturated 
porous medium. He used Darcy’s model for the porous 
medium and performed both linear as well as nonlinear 
stability analysis. Later, the author again examined this 
system (i.e., Krishnamurti’s [10] model) by considering 
Brinkman’s model for the porous medium [14]. Chang 
[15] extended the study of Krishnamurti by considering a 
two-layer system in which a fluid layer overlays a porous 
layer. The author examined the problem for two different 
configurations, namely, when the layer is heated from 
below and when the layer is heated from above.

The effect of magnetic field on nanofluid convection 
has its relevance and significance in numerous 
applications in biochemical engineering, geophysics, 
astrophysics, and chemical engineering [16]. Yadav et al. 
[17] performed a linear stability analysis to investigate 
the effect of a uniform vertical magnetic field on the 
onset of nanofluid convection and discussed the case of 
both non-oscillatory as well as oscillatory convection. 
They reported that the parameters Le  (nanofluid Lewis 
number), 

AN  (modified diffusivity ratio), and Rn  
(concentration Rayleigh number) have a destabilizing 
effect on the system. Later, Gupta et al. [16] examined 
the onset of nanofluid convection subjected to an 
applied magnetic field. They considered a bottom-heavy 
nanoparticle distribution and discussed the stability 
analytically as well as numerically. The authors observed 

that the parameters Rn  and Le  decelerate the onset of 
convection for both oscillatory and stationary mode of 
convection, whereas, the parameter AN  advances the 
onset of convection for stationary convection and delays 
the onset of convection for oscillatory convection. For 
more interesting studies related to nanofluid convection 
subject to an applied magnetic field, the reader may refer to 
[18-22] and references therein. Magnetic nanofluids (MNFs 
or ferrofluids) are the nanofluids that consist of magnetic 
nanoparticles suspended in a non-magnetic base fluid. 
One of the most important characteristic features of the 
MNF that distinguishes MNF from other fluids is that 
the fluid flow in MNF can be controlled by selecting an 
appropriate magnetic field. In many of the applications, 
it is desirable to control the fluid flow in porous media 
without directly accessing the fluid. These applications 
include emplacement of geophysically imageable liquids 
into specific zones for subsequent imaging, treatment 
chemicals, or controlled positioning of liquids [23]. 
MNFs play a significant role in these applications. The 
study of ferrofluid convection in porous media subject 
to an applied magnetic field begins with the work of 
Vaidyanathan et al. [24]. Mahajan and Sharma [25] studied 
the convective instability in a MNF-layer-saturated porous 
medium subject to a uniform magnetic field. The impact 
of Brownian motion, thermophoresis, magnetophoresis, 
and Darcy’s law on the MNF fluid flow is considered in 
their study. Sheikholeslami [26] investigated the free 
convection of MNF in a porous curved cavity subject to an 
external magnetic source. Several interesting problems 
related to the onset of magnetic nanofluid convection are 
investigated by [27–33] under different aspects.

The present literature survey confirms that there is no 
published work regarding the onset of MNF convection 
in porous media induced by selective absorption of 
radiation. In this article, a numerical investigation is 
performed to examine the onset of instability in a layer 
of MNF-saturated low-permeability porous media under 
the influence of an applied magnetic field. The results 
are discussed for various combinations of boundary 
conditions on impermeable surfaces, conducting surfaces, 
free surfaces, and surfaces with constant heat flux. In 
various engineering applications, the temperature of a 
wall is not uniform but, rather, is a result of the imposition 
of a constant heat flux [34]. These applications required 
the study of constant heat flux boundaries. Experimental 
studies with the constant heat flux boundaries are 
conducted by various researchers including [35, 36]. In 
this article, we consider the following three different 
boundary conditions: (i) when both lower and upper 
boundaries are impermeable and conducting (I_C-I_C) 
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(ii) when lower boundary is impermeable and conducting 
while upper boundary is impermeable with constant 
heat flux (I_C-I_CHF), and (iii) when lower boundary is 
impermeable and conducting while upper boundary is 
free with constant heat flux (I_C-F_CHF). Moreover, the 
nanoparticle fraction is adjusted in a way such that the 
nanoparticle flux is zero on the boundaries. To derive the 
boundary conditions for nanoparticle volume fraction, 
the effect of both thermophoresis and magnetophoresis 
on the nanoparticle flux is taken into account. The results 
are calculated by using the Chebyshev pseudospectral 
method for two different configurations (i) when the layer 
is heated from below and (ii) when the layer is heated from 
above. The effects of several important parameters that 
affect the onset of instability are observed.

2  Formulation of the problem
The physical configuration of the problem is depicted in 
Figure 1. The model consists of a layer of incompressible, 
MNF-saturated, low-permeability, porous medium, subject 
to a uniform applied magnetic field 0 .extH=H k  The lower 
and upper boundaries are separated by thickness d  with 
temperature LT  at the lower boundary and UT  at the 
upper boundary. In addition, an internal heat source Q  is 
present within the MNF-saturated porous layer. 

In order to derive the governing equations, the 
following assumptions are made [2]:
(1) fluid flow is incompressible,
(2) suspension is dilute ( 1φ � ),
(3) viscous dissipation is negligible,
(4) two components (magnetic nanoparticles and base 

fluid) are locally in thermal equilibrium,
(5)  the particles are suspended in nanofluid using either 

a surfactant or a surface charge technology that 

prevents particles from agglomeration and deposition 
on the porous matrix.

(6) the Boussinesq approximation and Darcy’s law hold.
Following [3, 13, 37, 38], and under the above 

mentioned assumptions, the relevant equations governing 
the fluid flow are given as follows:

The equation of continuity is

· 0,∇ =V (1)

where V  represents the filter velocity.
The equation of momentum is

0( . ) ,f p gk
E t K

ρ µ µ ρ∂
= −∇ − + ∇ −

∂
V V M H (2)

where 0, , , , , , ,f E t p Kρ µ µ  and M  are the density of 
MNF, porosity parameter, time, pressure term, viscosity, 
permeability parameter, magnetic permeability of vacuum 
and magnetization, respectively. Moreover, the MNF density 
ρ  is considered as (1 ) (1 ( ))p f LT Tρ φρ φ ρ α= + − − − .  
Here, we followed the model of Krishnamurti [10] and 
assumed that the density of fluid does not depend on the 
thymol blue concentration.

The equation of nanoparticle is 
 

0

1 · ·  ,B T H
L

T HD D D
t E T H
φ φ φ

 ∂
+ = + −  ∂ 

∇
∇ ∇



∇
∇V (3)

where φ  is the volume fraction of magnetic nanoparticle. 
,B TD D , and HD  stand for the Brownian diffusion, 

thermophoretic diffusion, and magnetophoretic 
coefficient, respectively. The term 0H  represents the 
uniform magnetic field of the MNF layer.

The equation of temperature is

Figure 1: Physical configuration.
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where ( ) ,( ) ,m fc cρ ρ  and ( ) pcρ  are the effective 
volumetric heat capacity of the porous medium, volumetric 
heat capacity for the MNF, and volumetric heat capacity 
for the nanoparticles, respectively. The terms 1k  and Q  
represent the MNF thermal conductivity and heat source 
(which depends on the amount of radiation absorbed) 
respectively. Following Krishnamurti [10], a relationship 
between Q  and C  is considered in the following form: 

( ) ,t
fQ c Cρ α=  where tα  represents a proportionality 

constant. 
The equation of thymol blue concentration is

2 · ,c
C C k C
t

∇∂ = ∇+
∂

V (5)

where C  and ck  are the concentration and thymol blue 
diffusivity, respectively.

The relevant Maxwell equations in the magnetostatic 
limit are taken as

0· 0, 0, ( )  ,µ= × = +∇ =∇B H B M H (6)

where B  represents the magnetic induction.
Following Kaloni and Lou [39], magnetization is 

assumed to be characterized as follows:

( ) ( , , ),eq s L eqM M L M H T
H H

φ α φ= =
H H

(7)

 where 1( ) coth( )L L
L

L α α
α

= − . Here L
B

mH
k T

α =  is the Langevin 
parameter. The terms k ,M ,B s  and m  stand for the 
Boltzmann constant, magnetic saturation, and magnetic 
moment of a single particle, respectively.

To determine the solution in the quiescent state, the 
magnetic equation is linearized in the following manner 
[40]:

0 0 0[ ( ) ( ) ( )],m h pM H H K T T K
H

χ φ φ= + − − − + −
HM (8)

where 0 0/mK H Tχ=  and 0 0/pK Hχ φ=  are the 
magnetic coefficients. The term 

0M  and χ  are the 
constant mean value of magnetization and tangent 
magnetic susceptibility respectively.

The parameters χ  and 2χ  (chord magnetic 
susceptibility) can be estimated by using the Langevin 
parameter as

( ) ( )

2
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0
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1,    ,
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1,    ,

11,    , 1

s
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HmH
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α


 = =

 ′= = = =

   = = − 
  

�
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The boundary conditions are taken as

0

0

0, , 0, at 0,

0, , 0, 0 at .

T H
L B L

L

T H
U B

L

D DT Hw T T D C C z
z T z H z

D DT Hw T T D C z d
z T z H z

φ

φ

∂ ∂ ∂
= = + − = = = ∂ ∂ ∂ 


∂ ∂ ∂ = = + − = = = ∂ ∂ ∂ 

 (9)

In addition, to derive the magnetic boundary conditions, 
the normal component of the magnetic induction and the 
tangential component of the magnetic field are assumed 
to be continuous across the boundary. 

The dimensionless quantities are introduced as 
follows:

* * * * * *

* 2 * *

* * *
0 0

0

( , , ) ( , , ) / , ( , , ) ( , , ) / ,

( / ) , ( / ) , ,

, / , / .

f

L U

x y z x y z d u v w u v w d

g Kd
t d t p K p T T

T T

H M

κ

ρ α
κ µκ

µκ

φφ
φ

= =

 
 = = =
 −
 

= = =H H M M

∣ ∣

(10)

Note that ( ),L U L UJ T T T T− = −∣ ∣  where 
( )L UJ sign T T= −  which takes the value 1−  when 

the layer is heated from above and 1+  when the layer is 
heated from below.

Using equation (10) in equations (1)-(8), we obtain the 
following set of equations

· 0,∇ =V (11)

1 2

1 ( · ) (

) ,
a

N

p Rn RT
V t

Ra T

φ

φ γ φ γ

∂  = −∇ − + − − ∂ 

+ − +

∇
V V M H

k

ù
(12)

  
2 2 21 1 · ,

t
A AN N

T H
t E Le Le Le
φ φ φ∂
+ = ∇ + ∇∇ − ∇

∂
V (13)

    

2· ( · ) ( · )

( · )

 

,

B A B

t
A B

N N NTA T T T T T
t Le Le

N N
T H YRC

Le

φ∂
+ ∇ =∇ + ∇ ∇ + ∇ ∇

∂

− ∇ ∇ +

V

(14)
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2· , C C
t

φ η∇
∂

+ = ∇
∂

V  (15)

1 1 2

2 2 2

(1 ) ,
1 1

t

t
M M

H T
H M M

χ χχ χ φ
χ χ χ

 −+  = − + + + +  

HM (16)

2   · · 0.χ +∇ =∇ M H (17)

In equations (12)-(17)

0

2

0 0

2 2
0 0

20 1

2 2
0 0 0 0

1 2
0

( )
, , , ,

, , ,

( )
, , ,

( ) (1 )

,
(1 )

f L U p f c

f

t
tL UT H L

A A
B L f B L U

p L U
B

f B ff L

t

f
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R Rn Pr

T TD D C d
N N Y
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c H T T
N E Le M

c D g dKg d T

H H
M M

g d

ρ α ρ ρ φ µη
µκ µκ κ ρ κ
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φ ρ α φ κ

ρ µ χ µκκφ
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2 2
0 0

2
0

, ,t

f h f

H
M

g dT g d
µ χ

ρ α ρ α φ
=

are the square root of thermal Rayleigh number, 
concentration Rayleigh number, diffusivity ratio, Prandtl 
number, modified diffusivity ratios ( , )t

A AN N , ratio of 
internal heating to boundary heating, modified particle-
density increment, MNF Lewis number, and magnetic 
parameters 1 1 2 2( , , , )t tM M M M , respectively. In 
addition, the parameters 1 0( ) / ( ),f Lg dKTγ ρ φ α µκ=  

2 ( (1 ) ) / ( ),f LT gdKγ ρ α µκ= +  
0NRa Rφ=  and 

 stand for some non-dimensional 
group. Note that, the thermal Rayleigh number for the 
present problem is defined as 2.Ra R=

In dimensionless form, the boundary conditions 
(equation (9)) take the following form:

     

3

3

0, , 0, 1, at 0,

0, , 0, 0

 

, at 1.

f t
L A A

L U

f t
U A A

L U

g d T Hw T T N N C z
T T z z z

g d T Hw T T N N C z
T T z z z

ρ α φ
µκ

ρ α φ
µκ


∂ ∂ ∂ = = + − = = =

− ∂ ∂ ∂ 

∂ ∂ ∂ = = + − = = =

− ∂ ∂ ∂ 

∣ ∣

∣ ∣

 
(18)

3  The basic state
The basic state solution is assumed to be in the following 
form:

, ( ), ( ), ( ),

( ), ( ), ( ).
b b b

b b b

p p z T T z z

C C z z z

φ φ= = = =

= = =

v 0

M M H H (19)

 Using (19), equations (12)-(17) become

    
1 2 0,  b b

b b b N b b b

dp dH
M Rn RT Ra T

dz dz
φ φ γ φ γ− + − + − + − =ù (20)

2 2 2

2 2 2 0,tb b b
A A

d d T d H
N N

dz dz dz
φ

+ − = (21)

2

2 0,
t

b b b b bB A B A B
b

d T d dT dH dTN N N N N
YRC

Le dz Le dz Le dz dzdz
φ  + + − + = 

  
(22)

2

2 0,bd C
dz

= (23)

2 0,b bdM dH
dz dz

χ + = (24)

   
1 1 2

2 2 2

1 .
1 1

t

tb b b b
M M

M H T
M M

χ χχ χ φ
χ χ χ

 −+  = − + + + +  
(25)

Solving equations (20)-(25) subject to boundary conditions 
(equation (18)) gives

1
0

2

1 1 1 1 1 1

2 2 2 2 22 2

 ( ) , ( ), 1 ,

11 ( ), 1 ( ),

L
b b b

L U
t t

t tb b

T D
T G z R G z C z

T T D

M D M M D M
H G z M G z

M D M DM M

φ φ

χ

= + = − = −
−

   
= + + = − +      

   

∣ ∣

(26)

Figure 2 represents the base flow profiles of , , ,b b bT Hφ  and 
M .b  The figure is plotted for two different configurations, 
namely, when the layer is heated from below ( )1J = +  
and when the layer is heated from above ( )1 .J = −  It 
can be seen from the figure that the base flow profiles of 

, , ,b b bT Hφ  and bM  for 1J = +  are completely different 
from the base flow profiles plotted for 1.J = −

4  The linear stability problem
Now, we have superimposed the infinitesimally small 
perturbation on the basic state solution in the following 
form:

[ , , , , , , ] [ , , , ,

, , ],

t t t t
b b b
t t t

b b b

p T C p p T

C C

φ φ φ θ= + + +

+ + +

v H M v

H H M M (27)

where , , , , , ,t t t t t tp Cφ θv H  and tM  are the perturb 
variables that are considered to be small.
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Using equation (27) into equations (12)-(17) yields

   

2
2 1 2 1 1

1 0
2 22

2 22 1 1
1 1 1
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2

1 1
2 2
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1 ( ) ( ) ( )

( ) ( ) ( )
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V t D DM
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DM

D
M R Ra M G z

D z

φ

θ φ

ψ

 ∂∇  ′ ′= −∇ − − + − + ∂   
  ′ ′×∇ − − − + ∇ 
  

  ∂∇
′+ +   ∂ 

(28)

      
2 2 21

2
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A AD N N
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t E D Le Le Le z
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∂ ∂
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M z zz M
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χ
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(32)

Figure 2: Base flow profile of (1) ,bT  (2) ,bφ  (3) H ,b  and (4) 
bM  for (a)  1,J = +  and (b)  1.J = −

1 1
1 2

2 2
3 2

where , 1 ,

and ( )
6 2 3

t

tA A A
M M

D N N D N
M M

z z YG z YR R J z
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Equations (28)-(32) possesses a boundary value problem 
Page. We reset the present domain from [ ]0,  1  to [ ]1,1−  
by applying a coordinate transformation from z  to 
2 1z −  in equations (28)-(32). This is so because, here 
we have planned to apply the Chebyshev pseudospectral 
method in which the domain of the problem must be 
[ ]1,1 .−  Thereafter, we use the normal mode procedure in 
which the normal mode solution is considered to be in the 
following form:

{ , , , , } { ( ), ( ), ( ), ( ), ( )}
exp{ ( )},x y

w C w z z z z C z
t i k x k y

θ φ ψ θ φ ψ
σ

=
× + + (33)

where xk  and yk  represent the wave numbers in x
-direction and y -direction, respectively.

Using equation (33), equations (28)-(32) give the 
following system of equations

{

}

2 2 2 2
1 1 0

21 2 1 1
1 1

2 22

2 1 1
1 1 1 1

22

2 21
2 2 1

2
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t
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t
s
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V
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σ φ
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φ ψ

′− = − − + − +
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The boundary conditions for the amplitudes take the form
 

  

22 0 at 1,

2(1 ) 0 at 1,
2(1 ) 0 at 1,

t
A AD N D N D C z

D k z
D k z

φ θ ψ

χ ψ ψ
χ ψ ψ

+ − = = = ±
+ − = = − 
+ + = = + 

with 0 1w at zθ= = = ±  for I _ C I _ C−  boundaries; 
0w θ= =  at 1z = −  and 0w Dθ= =  at 1z = +  for 

I _ C I _ CHF−  boundaries; 0w θ= =  at 1z = −  
and 0Dw Dθ= =  at 1z = +  for  I _ C F_ CHF−  
boundaries.

5  Method of solution
The above-mentioned system of equations (34)-(38) - 
with the boundary conditions (equation (39)) constitutes 
an eigenvalue problem. The Chebyshev pseudospectral 
method is selected to solve this eigenvalue problem. 
We closely followed the same process and algorithm, as 
mentioned in Ref. [39]. First, we applied QZ-algorithm to 
calculate the salient eigenvalue (say r jiσ σ σ= + ) for 
fixed values of , , , , , ,Lk Le Rn Yα η  and several other 
dimensionless parameters. By the salient eigenvalue, 
we mean that eigenvalue which has the largest real part. 
Second, we applied the Regula Falsi method to determine 
the particular value of β  corresponding to which the real 
part rσ  of the salient eigenvalue σ  tends to zero. This 
procedure endows a single point in the neutral stability 
curve. We reiterate this procedure for several values of k  
to enlist the desired neutral stability curve. The critical 
temperature gradient cβ  with ck  (the critical wave 
number) can be defined as

( ), , min , , ...c
k

LY Pr Leη αβ β=               (40)

Moreover, the function FMINBND (a combination 
searching of gold section and parabolic method) of 
MATLAB is used to minimize equation (40).

To examine the nature of the stability, we applied 
a numerical approach by using the Chebyshev 
pseudospectral method. The nature of the stability is 
called stationary (or non-oscillatory) if the imaginary 
part of the salient eigenvalue tends to be zero at the same 
time when its real part approaches to zero. Otherwise, 
the nature of the stability is called oscillatory. In order 
to have a check on the nature of the stability, the salient 
eigenvalue r jiσ σ σ= +  is estimated one by one for 
all the dimensionless parameters and noticed that 

jσ  
always tends to be zero simultaneously when rσ  tends 
to be zero. This behavior is found to be same for both the 
configurations (i.e.,  1J = +  and  1J = − ). Thus the 
nature of the stability for the present problem is stationary.

The present numerical solution is validated by 
comparing the results with those in Hill [13]. For this 
purpose, we have solved our problem in the absence of a 
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magnetic field and magnetic nanoparticle concentration 
for I_C–I_C boundaries. It can be seen from Table 1 that 
the comparison is found to be very good.

6  Results and discussion
In this section, the results are illustrated graphically 
in Figures 3-7 and in Table 2 for  1J = +  and  1.J = −  
The results are derived for the following non-
dimensional parameters that significantly affect the 
onset of convection: porosity parameter, the ratio of 
internal heating to boundary heating, Lewis number, 
concentration Rayleigh number, Langevin parameter, 
the width of MNF layer, the diffusivity ratio, and 
modified diffusivity ratio. Following Kaloni and Lou [39] 
[Table 1, page 7] and Rosensweig [41] [Table 2.4, page 
71], the values of pertaining parameters are taken as 

11,180, 0.59, 15,900, 0.007, 5.2 4.f sk M eρ µ α= = = = = −  
In order to illustrate the influence of selective 

absorption of radiation at the onset of MNF convection, 
the neutral stability curves for different values of Y  are 
plotted in Figure 3 for three different boundary conditions. 
For both the cases, namely,  1J = +  and  1J = − , it can 
be seen from the figure that as the value of Y  increases, 
the value of 

cRa  decreases for all the three boundary 
conditions. It elucidates that the parameter Y  advances 
the onset of convection. The reason for such behavior 
of Y  is the following: a higher value of Y  implies that 
the internal heating is promoted, which in turn creates a 
disturbance in the MNF layer and leads to a lower value 
of cRa

. This finding agrees well with the result of Hill 
[13] in the absence of a magnetic field and nanoparticle 
concentration.

To examine the influence of porous medium and 
Lewis number on the stability of the system, we plot the 

variation of cRa  as a function of porosity parameter E  
for several values of Le  in Figure 4. It is clear from the 
figure that cRa  increases as E  increases. Thus, an 
increase in the parameter E  decelerates the onset of MNF 
convection. Such behavior of epsilon is in agreement with 
the literature by Yadav et al. [7, 42] in the absence of an 
applied magnetic field. It is also observed from the figure 
4 that the values of cRa  decreases as Le  increases. As 
the Lewis number is directly proportional to the thermal 
diffusivity, therefore, as the value of Le  increases, the 
value of thermal diffusivity also increase. For a higher 
value of thermal diffusivity, the amplitude of disturbance 
waves increases, which leads to a lower value of cRa  
[43]. Thus the parameter Le  advances the onset of MNF 
convection. A similar observation was made earlier by 
Yadav et al. [7] in the absence of an applied magnetic field.

In the primary study of nanofluid convection 
in porous media, Nield and Kuznetsov [2] reported 
that the stabilizing or destabilizing behavior of Rn  
depends on the type of nanoparticle distribution (i.e., 
whether nanoparticle distribution is bottom-heavy or 
top-heavy). Neutral stability curves for three different 
boundary conditions are presented in Figure 5 for several 
values of Rn . The graphs are plotted for two different 
configurations, namely,  1J = +  (i.e., when the layer is 
heated from below) and  1J = −  (i.e., when the layer is 
heated from above). It can be seen from Figure 5 that the 
value of cRa  decreases as Rn  increases for  1J = + ,  
whereas the value of cRa  increases as Rn  increases 
for  1.J = −  The reason behind this may be the change 
in the type of nanoparticle distribution, which is clear 
from Figure 2, where the nanoparticle distribution is 
found to be top-heavy when  1J = +  and bottom-heavy 
for  1.J = −  A destabilizing behavior of Rn  for top-
heavy nanoparticle distribution was reported earlier by 
Nield and Kuznetsov [2]. Moreover, for a bottom-heavy 

Table 1: Comparison of cRa  and 2.k

Hill [13] Present study

J η 2
ck cRa 2

ck cRa

+1 0.001 4.9720 0.647667688 4.9720 0.647666602

0.005 5.1174 3.054321113 5.1175 3.054321508

0.01 5.2908 5.699734754 5.2900 5.699684893

−1 0.001 4.8990 0.667125786 4.8991 0.667125722

0.005 4.7525 3.541442825 4.7524 3.541426234

0.01 4.5617 7.666775544 4.5616 7.666778591
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Figure 3: Neutral stability curves for distinct values of Y  for (a)  1J = +  and (b)  1J = − ; for (1) I_C-I_C, (2) I_C-I_CHF, and (3) I_C-F_CHF 
boundaries.

Figure 4: Variation of cRa  as a function of E  for distinct values of Le  for (a)  1J = +  and (b)  1J = − ; for (1) I_C-I_C, (2) I_C-I_CHF, and (3) 
I_C-F_CHF boundaries.
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Figure 6: Variation of cRa  as a function of Lα  for distinct values of d  for (a)  1J = +  and (b)  1J = − ; for (1) I_C-I_C, (2) I_C-I_CHF, and (3) 
I_C-F_CHF boundaries.

Figure 5: Neutral stability curves for distinct values of Rn  for (a)  1J = +  and (b)  1J = − ; for (1) I_C-I_C, (2) I_C-I_CHF, and (3) I_C-F_CHF 
boundaries.
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nanoparticle distribution, a stabilizing effect of Rn  was 
observed in various studies including [16, 44].

In order to unfurl the key features of Langevin 
parameter Lα  and the width of nanofluid layer ,d  the 
influence of both Lα  and d  on cRa  is presented in 
Figure 6. We note that the value of cRa  increases when 

Lα  increases. This is so because, in the process of MNF 
convection, the buoyancy forces together with the forces 
that originate because of the appearance of an internal 
heat source dominate the magnetic forces, and, hence as 
the intensity of magnetic field increases, the disturbance 
in the MNF layer decelerates. This leads to a higher value 
of cRa . As plotted in Figure 6, the value of cRa  is found 
to be increasing with an increase in the value of .d  As 
the value of d  increase, the value of critical temperature 

cT∆  decreases which in turn suppresses the disturbance 
in the magnetic nanofluid layer and tends to a higher 
value of cRa . Thus both the parameters Lα  and d delay 
the onset of MNF convection. In the absence of magnetic 
nanoparticles, a similar behavior was observed for Lα  
and d  by Kaloni and Lou [39].

Figure 7 shows the effect of η  and 
AN  on cRa  for 

three different boundary conditions. It can be seen that 

cRa  decreases as the value of AN  increases. On the other 
hand, cRa  increases with an increase in .η  As the value of 

AN  increases, the value of thermophoretic diffusivity also 
increases. At a higher value of thermophoretic diffusivity, 
thermophoresis promotes the growth of turbulence in 
the MNF layer, which gives a lower value of .cRa  Thus 
the parameter η  has a stabilizing effect and AN  has a 
destabilizing effect on the system. An identical behavior 
of the parameter AN  was reported earlier by Yadav et al. 
[7] in the absence of magnetic field. For the parameter ,η  
a similar behavior was reported earlier by Hill [13] for a 
regular fluid.

Table 2 presents the values of ck  and cRa  for three 
different boundaries, namely, I_C-I_C, I_C-I_CHF, and 
I_C-F_CHF. These values are calculated for two different 
configurations, that is,  1J = +  and  1.J = −  Our main 
interest in presenting this table is to examine the influence 
of Y  and η  on the critical wave number ck  and the 
critical thermal Rayleigh number .cRa  The table shows 
that the value of cRa  increases as η  increases, whereas, 

cRa  decreases as Y  increases. This behavior is noticed to 
be the same for both the two different configurations and 
all the three boundary conditions. Thus the parameter Y  

Figure 7: Variation of cRa  as a function of η  for distinct values of AN  for (a)  1J = +  and (b)  1J = − ; for (1) I_C-I_C, (2) I_C-I_CHF, and (3) 
I_C-F_CHF boundaries.
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always hastens the onset of convection and the parameter 
η  always decelerates the onset of convection. These 
observations agree well with the findings of Hill [13] 
[see Table 2, pp. 462], where the author investigated this 
problem in the absence of nanoparticles and magnetic 
field. It is also noticed that the value of cRa  is higher in 
case of I_C-I_C boundary condition and the least for I_C-F_
CHF boundary condition for both  1J = +  and  1.J = −  
Thus the system is most stable for I_C-I_C boundaries and 
least stable for I_C-F_CHF boundaries.

7  Conclusions
The linear stability theory is applied to study the magnetic 
nanofluid convection stimulated by selective absorption 
of radiation subjected to an applied magnetic field. The 
problem is investigated for two different configurations, 
namely, when the layer is heated from below (  1)J = +  
and when the layer is heated from above (  1).J = −  The 
Chebyshev pseudospectral method is applied to solve 
the resulting eigenvalue problem for I_C-I_C, I_C-I_CHF, 
and I_C-F_CHF boundaries. The effect of the porosity 
parameter ,E  the parameter ,Y  the Lewis number ,Le  

Table 2: The values of the ck  and cRa  for three different boundary conditions.

I_C-I_C I_C-I_CHF I_C-F_CHF

J Y η
ck cRa ck cRa ck cRa

+1 1  0.001 2.23 0.6144 1.76 0.3656 1.35 0.1476

0.004 2.18 1.9434 1.74 1.2343 1.32 0.5100

0.007 2.12 2.7561 1.72 1.8437 1.29 0.7712

0.010 2.05 3.2883 1.70 2.2875 1.25 0.9622

5 0.001 2.22 0.1298 1.76 0.0761 1.36 0.0304

0.004 2.23 0.4957 1.76 0.2934 1.35 0.1176

0.007 2.22 0.8236 1.76 0.4938 1.35 0.1980

0.001 2.22 1.1151 1.76 0.6776 1.34 0.2717

10 0.001 2.22 0.0653 1.76 0.0382 1.36 0.0153

0.004 2.23 0.2549 1.76 0.1497 1.35 0.0597

0.007 2.23 0.4337 1.76 0.2561 1.35 0.1019

0.010 2.23 0.6013 1.76 0.3574 1.35 0.1418

–1 1 0.001 2.18 0.6640 1.75 0.3920 1.35 0.1554

0.004 2.01 2.4104 1.69 1.5500 1.3 0.6131

0.007 1.82 3.5526 1.61 2.5300 1.24 1.0167

0.010 1.63 4.2320 1.53 3.2718 1.17 1.3456

5 0.001 2.22 0.1322 1.76 0.0773 1.36 0.0308

0.004 2.20 0.5312 1.75 0.3117 1.35 0.1238

0.007 2.17 0.9254 1.74 0.5477 1.35 0.2172

0.010 2.15 1.3071 1.74 0.7831 1.35 0.3106

10 0.001 2.22 0.0659 1.76 0.0385 1.36 0.0154

0.004 2.21 0.2647 1.76 0.1547 1.36 0.0615

0.007 2.21 0.4636 1.75 0.2712 1.36 0.1076

0.010 2.20 0.6614 1.75 0.3879 1.36 0.1537
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the concentration Rayleigh number ,Rn  the Langevin 
parameter ,Lα  the width of nanofluid layer ,d  the 
diffusivity ratio ,η  and the modified diffusivity ratio 

AN  is observed at the onset of convection. The following 
conclusions are drawn:

(1) The value of cRa  increases as the value of 
, , ,LE dα  and η  increases, and decreases as the value 

of , ,Y Le  and AN  increases. Thus, , , ,LE dα  and η  
decelerate the onset of MNF convection, and , ,Y Le  and 

AN  promote the onset of MNF convection.
(2) The effect of Rn  on the onset of convection 

depends on the type of configuration (i.e., whether 
 1J = +  or  1J = − ). For  1,J = +  Rn  hasten the onset 

of MNF convection, whereas for  1,J = −  Rn  delays the 
onset of MNF convection.

(3) Among all the three type of boundaries, the 
system is found to be most stable for I_C-I_C boundary 
condition and least stable for I_C-F_CHF boundary 
condition.
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