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Abstract: This paper presents a finite element (FE) 
method of modelling reinforced concrete beams. The 
proposed model takes into account the phenomena 
characteristic of reinforced concrete structures, such 
as the interaction between two materials (concrete and 
steel), the cracking caused by mechanical loads and the 
variation of the Young’s modulus under increasing load. 
A relevant numerical FE analysis was carried out in the 
ABAQUS system using the concrete damaged plasticity 
(CDP) model. The character of Young’s modulus variation 
due to increasing stress intensity level was taken from the 
author’s own research. The results of the FE calculations 
were compared with the results yielded by the author’s 
numerical bar model.

Keywords: concrete, reinforced concrete, deflection, 
numerical analysis, Young’s modulus.

1  Introduction
Nowadays structural engineers are often adopting 
innovative design solutions not covered by the schemes 
and algorithms proposed by universal design codes. As 
part of the design process, object models are created and 
subjected to analyses. Formerly mainly experimental 
(reduced- or full-scale) models and simple mathematical 
models were used chiefly due the fact that numerical 
techniques were then little advanced and not generally 
available. The rapid development of electronics and 
informatics has impacted other scientific technical 
fields, including civil engineering. Owing to this, one can 

now create and analyse complicated numerical models 
(especially FEM models) whose cost is relatively low (in 
comparison with experimental models and the associated 
measuring apparatus).

In numerical modelling, the adopted assumptions – 
particularly the strength and deformation parameters of 
the materials of which the structure is to be made – are of 
utmost importance. This paper presents a procedure for 
the FEM modelling of reinforced concrete beams, using 
concrete parameters obtained from in-house tests (mainly 
the Young’s modulus). It can be said that this is one of 
the most effective ways to reduce experimental costs. In 
the considered case, only material tests were carried out, 
which is not sufficient, because the FEM model should be 
confronted with tests of model of the structure in half or 
full scale. However, FEM modelling can reduce the need 
for multiple structural models. The created numerical 
model took into account phenomena characteristic of 
reinforced concrete structures, such as the interaction 
between two materials (concrete and rebars), cracking 
and the variation of the Young’s modulus of the concrete 
depending on the stress intensity level. The variation was 
recorded in in-house tests.

In other words, the main goal of this study was 
to implement the experimental results in the created 
numerical FEM model. Moreover, a reinforced concrete 
beam bar model, which takes into account the Young’s 
modulus changing depending on the stress intensity 
level, was developed in order to verify the results.

2  Review of selected literature on 
the subject
The investigations focused on the Young’s modulus of 
concrete, which specifies how stiff the given concrete is 
in compression or tension and so has a bearing on such 
problems as: the axial stiffness of bar elements, the 
bending stiffness of bar elements, slab stiffness, in-plane 
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stiffness and the stiffness of elements in a spatial stress 
state.

Young’s modulus applies to materials for which 
the stress–strain relationship is linear. Although the 
behaviour of concrete is nonlinear, according to Neville 
(1977) it can be assigned the following Young’s moduli in 
compression:

 – tangent initial Young’s modulus – defined by a 
straight line tangent to the graph in the origin of the 
coordinate system (Fig. 1 – straight line 1);

 – tangent Young’s modulus – defined by a straight line 
tangent to the graph in a given graph point (Fig. 1 – 
straight line 2);

 – secant Young’s modulus – defined by a straight line 
secant to the graph for a specified stress range σ1÷σ2 

(Fig. 1 – straight line 3);
 – Young’s modulus in unloading – defined by a straight 

line connecting the graph’s maximum and its end 
point after unloading (Fig. 1 – straight line 4).

The slope factors of the straight lines (1, 2, 3, 4) are the 
Young’s moduli corresponding to the respective straight 
lines.

The Young’s modulus of concrete is a very complex 
problem conditional on many factors. According to Neville 
(1977), these include:

 – the aggregate (the Young’s modulus of the aggregate, 
the shape of its larger particles and their surface area), 
as described by Jurowski and Grzeszczyk (2015);

 – the cement paste/aggregate ratio (the Young’s 
modulus of the aggregate is usually higher than that 
of the cement paste);

 – the age of concrete (the older the concrete, the higher 
its Young’s modulus);

 – the moisture content of the specimen (the Young’s 
modulus of a moist specimen is higher than that of a 
dry specimen);

 – the bulk density of the concrete (the higher the 
bulk density of the concrete, the higher its Young’s 
modulus);

 – the temperature of the initial curing of the concrete 
(the Young’s modulus is higher when the concrete 
is subjected to a lower temperature during its initial 
curing).

Moreover, according to Neville (2011), the effect of the stress 
intensity level in concrete on the magnitude of tangent 
and secant Young’s moduli is stronger for concretes with 
lower compressive strengths. Such concretes behave more 
ductilely. Whereas concretes with higher compressive 
strengths are more brittle.

In EN 12390-13 (2013), one can find two methods 
of testing the secant elasticity modulus of concrete in 
compression, i.e. method A and method B. In both the 
methods the specimen is preliminarily loaded in a few 
cycles up to a specified stress intensity level (0.1÷0.15 fcm 
in method A and 1/3 fcm in method A and B, where fcm is 
the mean compressive strength of concrete in a uniaxial 
stress state, determined for collocated samples) and 
subsequently compressed until failure. The specimen 
setting in the strength-testing machine is assessed on the 
basis of strain readings from the relevant test stages, and 
appropriate adjustments are made to make sure that the 
eccentricity in compression will be as small as possible 
(the specimen should be compressed axially). Using the 
stress and strain obtained from the particular load cycles, 
one calculates the secant initial Young’s modulus (method 
A) or the secant stabilized Young’s modulus (method A 
and B).

According to ASTM C469/C469M-14 (2014), the 
specimen should be subjected to at least three load cycles. 
The purpose of the first load cycle is to check and if need 
be, to correct any deviations from the proper specimen 
setting in the strength-testing machine. In the second and 
subsequent cycles, the stress at which the strain amounts 
to 0.05‰ and the stress corresponding to 40% of the 
mean compressive strength of the concrete in collocated 
samples are read. On the basis of the read stress and 
strain, one calculates the Young’s modulus of the concrete 
as a mean for the particular cycles.

In the case of concrete, one can also distinguish the 
so-called dynamic Young’s modulus which is determined 
not through a static compression test, but by investigating 

Figure 1: Graphical interpretation of Young’s moduli of concrete.
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longitudinal, transverse (bending) or torsional vibrations, 
as described by Neville (1977). Musiał and Grosel (2016) 
tried to investigate the dynamic Young’s modulus of 
concrete by exciting the vibration of concrete beams 
with different reinforcement ratios, made using different 
concrete mix designs. According to Neville (1977), this 
Young’s modulus is considered to be approximately equal 
to the tangent initial Young’s modulus determined in the 
static compression test. This is so since only small stress 
arises in a vibrating specimen. However, the relation 
between the static Young’s modulus and the dynamic 
Young’s modulus is not a simple one. Jurowski and 
Grzeszczyk (2018) presented a tentative relation between 
the two quantities.

Knowledge of the Young’s modulus is very important 
in order to design civil engineering structures. The 
calculations can be carried out according to the nonlinear 
analysis, where the stress–strain relationship for the 
concrete is used. However, where the linear-elastic 
analysis is usually sufficient, the Young’s modulus of 
the concrete is used. For example, in the case of beam 
elements, knowing the Young’s modulus, the element’s 
dimensions (the dimensions of its cross section, and 
its length), its load (the axial forces and the bending 
moments) and the boundary and continuity conditions, 
one can calculate the element’s contraction or elongation 
under, respectively, compression and tension and its 
deflection under bending. Moreover, axial stiffness and 
bending stiffness have a bearing on the distribution of 
internal forces in statically indeterminate systems, while 
bending stiffness influences second-order effects which 
often should be taken into account in the design of 
structures. Considering the above, the author decided to 
analyse the static behaviour of reinforced concrete beams, 
taking into account the Young’s modulus of concrete 
changing depending on the latter’s stress intensity 
level, i.e. taking into account the nonlinear behaviour of 
the concrete. This paper presents a way of modelling a 
reinforced concrete beam in ABAQUS using the concrete 
damaged plasticity (CDP) model which takes into account 
the nonlinear behaviour of the concrete, the cracking of 
the reinforced element and the issue described in detail 
by Pędziwiatr (2008, 2009) – the interaction between 
concrete and rebars. Similar problems have already been 
addressed by several authors (Rewers, 2019; Sinaei et al., 
2012; Szczecina et al, 2018; Wahalathantri et al., 2011). 
Moreover, in this paper a numerical analysis of a beam 
bar model which takes into account the Young’s modulus 
of concrete depending on the latter’s stress intensity level 
in a given cross section is proposed. Both the FEM solid 
model and the bar model are based on experimental results 

relating to the Young’s modulus of concrete for different 
stress intensity levels in the latter. One of the theories 
describing deformations in reinforced concrete structures, 
which takes into account the nonlinear behaviour of the 
concrete and the impact of cracking is the Borcz theory, 
described by Ubysz et al. (2017).

3  Experiments

3.1  Materials

Tests were carried out on 12 cylindrical concrete specimens 
300 mm high and 150 mm in diameter. The concrete mix 
design is presented in Table 1.

Concrete mix consistency was controlled by gradually 
adding superplasticizer Sikament FM-6. Ultimately, the 
superplasticizer mass was assumed to be equal to 1.2% of 
the cement mass.

3.2  Experimental procedure

Investigations of the Young’s modulus of concrete were 
carried out using two methods (I and II) based on Code 
method B (in accordance with EN 12390-13, 2013) for 
determining the stabilized Young’s modulus of concrete. 
The method was modified to take into account the 
influence of different concrete stress intensity levels on 
the Young’s modulus.

Three electrical resistance strain gauges RL=350/50 
were stuck at every 120° on each cylindrical specimen 
at half of its height along three lines on the cylinder side 
wall. The shape of the specimens and the arrangement of 
the electrical strain gauges are shown in Fig. 2.

Table 1: Design of concrete mix used to make tested cylindrical 
specimens.

No. Constituent Mass

[kg/m3]

1 Cement CEM I 42.5R 365.0

2 Aggregate 2-8 mm 650.0

3 Aggregate 8-16 mm 560.0

4 Sand 0-2 mm 650.0

5 Water 175.0

6 Superplasticizer 
(1.2% of cement mass)

4.5
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In the case of method I the load was applied according 
to the loading diagram shown in Fig. 3.

The symbols used in the description below should be 
interpreted in accordance with Fig. 3.

The numbers in brackets (1)–(6) represent the 
particular stops, i.e. pauses no longer than 20 s during 

which the specified stress level in the specimen should be 
maintained.

Method I differs from the standard code method in 
this that mean stress and strain in the specimen in the 
final load cycle should be read also halfway between 
lower stress level σp and upper stress level σa and above 
stress level σa at every 1/6 fcm.

The secant Young’s modulus of concrete for a given 
stress interval is calculated as the ratio of the difference 
between the stress indicated by two neighbouring 
readings and the difference between the mean strain 
corresponding to the readings.

In the case of method II, the load was applied in 
accordance with the diagram shown in Fig. 4.

The symbols in the description below should be 
interpreted consistently with Fig. 4. The numbers in 
brackets (1)–(12) represent the particular pauses.

In the case of method II, in the first two cycles the 
specimen is loaded up to the stress level of 2/3 fcm at a 
stop at 1/3 fcm. In the final load cycle, the mean strain and 
stress in the specimen are read at the end of each stop. 
The readings should be taken for stress halfway between 
stress levels σp and σa and between stress levels σa and σa‘, 
whereas after stress σa‘ is reached and a stop is made the 
specimen is loaded at stops at every 1/6 fcm.

In the case of method II, the secant elasticity modulus 
of concrete for a given stress range is calculated similarly 
as in method I.

The subsequent photographs show the specimen in 
the strength-testing machine prior to the test (Fig. 5) and 
after failure (Fig. 6). The visible characteristic cones in the Figure 2: Shape of tested specimens and arrangement of electrical 

resistance strain gauges.

Figure 3: Investigation of stabilized secant elasticity modulus  of concrete according to method I. 
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core of the failed specimen indicate that the specimen was 
compressed axially.

3.3  Test results

The test results for an exemplary specimen tested 
according to method I are presented in Figs. 7–9. The 

specimen loading diagram is shown in Fig. 7. The stress–
strain curve drawn on the basis of the test results is shown 
in Fig. 8. The dependence between the Young’s modulus 
of the concrete and the compressive stress and the stress 
intensity level in the specimen is illustrated in Fig. 9.

In accordance with EN 1992-1-1 (2004), the secant 
elastic modulus of concrete for the specimen represented 
by Figs. 7–9 amounts to Ecm=30.28 GPa.

Figure 4: Investigation of stabilized elasticity modulus EC,S of concrete according to method II.

Figure 5: Concrete specimen placed in strength-testing machine. Figure 6: Failed concrete specimen.
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The test results for the exemplary specimen tested 
according to method II are presented in Figs. 10–12. The 
specimen loading diagram is shown in Fig. 10. The stress–
strain curve is shown in Fig. 11. A diagram of the Young’s 
modulus of concrete versus the compressive stress and 
stress intensity level in the specimen is shown in Fig. 12.

In accordance with EN 1992-1-1 (2004), the secant 
elasticity modulus of concrete for the specimen 
represented by Figs. 10–12 amounts to Ecm=28.24 GPa.

It appears that method II yields an almost constant 
value of the Young’s modulus for the stress intensity 
level of about 60%. Whereas the value of the Young’s 
modulus investigated using method I begins to decrease 
at lower stress intensity levels. According to Neville 
(1977), the multiple loading of concrete eliminates creep 
(which occurs already as the concrete is being loaded). 
Subsequently, the value of the Young’s modulus stabilizes 
and the curvature of the stress–strain curve decreases. 

Figure 7: Diagram of specimen loading according to method I.

Figure 8: Stress–strain diagram for specimen tested according to method I.
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This can be observed for testing according to method II, 
where in the first two cycles the concrete is loaded not to 
the stress level of 1/3 fcm as in method I, but to 2/3 fcm. As a 
result, the material adapts to higher stress intensity levels, 
as shown in Fig. 12.

Thus for the same concrete not subjected to loading yet 
versus already loaded one gets different elastic modulus 
curves. Therefore in a precise analysis it is important 
whether the considered element is a debuting element or 
whether it has already been subjected to loading.

Figure 9: Young’s modulus E versus compressive stress σ and stress intensity level in concrete (method I).

Figure 10: Diagram of specimen loading according to method II.
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4  Numerical analysis
4.1  FEM model

An analysis of the static behaviour of the beam in ABAQUS 
was carried out for the concrete tested using method I (the 
specimen represented by Figs. 7–9). Reinforcement ratio 
ρ=1% (commonly used and economically viable) was 
assumed for the beam.

The geometry of the considered element is shown in 
Fig. 13.

The following nominal loading steps with the load 
uniformly distributed along the whole length of the beam 
were considered: 40, 45, 50, 55, 60 and 65 kN/m.

The beam was modelled in ABAQUS, taking into 
account the CDP model. The stress–strain relationship 
obtained from the tests was entered into program. 
Moreover the actual arrangement of reinforcement was 
taken into account in the model.

The beam alone was defined as a three-dimensional 
(3D) solid (element type: solid), while the reinforcement 
was built of one-dimensional elements in 3D space 

Figure 11: Stress–strain diagram for specimen tested according to method II.

Figure 12: Young’s modulus E versus compressive stress σ and stress intensity level in concrete (method II).
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(element type: wire). Moreover, steel support pads 
(element type: solid) were designed in order for the FE 
analysis to map well the actual support.

The rebars and the steel support pads were assigned 
linearly elastic (elastic) materials. The rebars were 
assigned reinforcement steel with E = 200 GPa and 
Poisson’s ratio ν = 0.3, while the steel support pads were 
assigned structural steel with E = 210 GPa and ν = 0.3.

A definition of a material such as concrete, to which a 
nonlinear stress–strain curve is to be assigned and which 
is to take element cracking into account, is more complex 
and requires a special material model, i.e. the CDP model. 
Moreover, one should endow the concrete with the elastic 
material characteristic since the stress–strain relationship 
in CDP is a polyline and the Young’s modulus assigned to 
the elastic characteristic corresponds to the slope of the 
first (counting from the origin of the coordinate system) 
segment of the stress–strain polyline. In addition, the 
elastic characteristic includes a Poisson’s ratio which for 
the concrete was assumed to amount to ν = 0.2.

The following concrete parameters were used in CDP:
 – a dilation angle (Szczecina and Winnicki, 2015a,b, 

2016): ψ=5°,
 – an eccentricity coefficient (Szczecina et al., 2018): 

ε=0.1, 
 – a maximum biaxial compressive stress/maximum 

uniaxial stress ratio: fb0/fc0  =1.16,
 – a ratio of the second stress invariant on the tensile 

meridian to that on the compressive meridian for the 
yield function (Chróścielewski et al., 2017; Szczecina 
and Winnicki, 2017): K=2/3,

 – a viscosity parameter (Szczecina et al., 2018; Szczecina 
and Winnicki, 2015a,b, 2016): μ=0.0001.

Stress values and the corresponding inelastic strain values 
were entered in order to implement the stress–strain curve 

for concrete under compression into the program. The 
stress–strain curve for concrete (taken from the Abaqus 
Analysis User’s Guide (2014)) is shown in Fig. 14.

The inelastic strain to be entered into the program for 
a given stress level is calculated from the eq. (1):

𝜀𝜀𝜀𝜀c̃in = 𝜀𝜀𝜀𝜀c − 𝜀𝜀𝜀𝜀0cel , (1) 

𝜀𝜀𝜀𝜀0cel = 𝜎𝜎𝜎𝜎c/𝐸𝐸𝐸𝐸0, (2) 

𝑓𝑓𝑓𝑓cm = 𝑓𝑓𝑓𝑓ck + 8 [MPa] ⇒ 𝑓𝑓𝑓𝑓ck = 𝑓𝑓𝑓𝑓cm − 8 [MPa], (3) 

𝑓𝑓𝑓𝑓ctm = 0.30𝑓𝑓𝑓𝑓ck
2/3, (4) 

𝑓𝑓𝑓𝑓ctm = 2.96 MPa 
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where: σc – compression stress for the given point on the 
stress–strain curve, E0 – the initial Young’s modulus.

The notations in eqs. (1) and (2) should be interpreted 
in accordance with Fig. 14.

When characterizing concrete in tension, taking into 
account tension stiffening, one should specify stress and 
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Figure 13: View and cross section of the considered beam (all dimensions in mm).
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Cracking strain is calculated from eq. (5):
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where: εt – strain due to tension for a given point on 
the stress–strain curve, ε0t

el – a part of the strain due 

to tension, normalized to the initial Young’s modulus, 
expressed by the eq. (6):
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(6)

where: σt – tensile stress for a given point on the stress–
strain curve, E0 – the initial Young’s modulus.

Figure 14: CDP stress–strain curve for concrete in compression (Abaqus Analysis User’s Guide, 2014).

Figure 15: CDP stress–strain curve for concrete in tension (Abaqus Analysis User’s Guide, 2014)
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Moreover, data relating to the failure parameter and 
the corresponding cracking strain were entered in order 
to obtain results for the failure of concrete in tension. The 
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where: σt0 – the tensile strength of concrete in a uniaxial 
stress state.

The notations in eqs. (5)–(7) should be interpreted in 
accordance with Fig. 15.

Taking into account the above, the stress–strain 
characteristic (based on the author’s own research) shown 
in Fig. 16 was entered into the program.

Material (bulk) density was assigned to both the steel 
and the concrete since in the considered case a dynamic 
explicit analysis which requires this parameter is carried 
out.

The object model consists of the beam’s concrete, 
the rebars and the steel support pads. Beam–rebars 
interactions and beam concrete–steel pads interactions 
were introduced in the next step. The rebars were 
connected with the beam’s concrete through an embedded 
region constraint while steel pads–concrete interactions 
were effected through a tie constraint. The model is shown 
in Fig. 17.

Then boundary conditions and loads are entered. 
The supports were introduced as linear pinned supports 
with the possibility of shifting one beam end along the 
beam. The supports were located at half the width of the 

steel pads. The load was defined as a pressure-type load 
applied to the beam’s top surface.

Subsequently, all the model’s parts were divided into 
FEs. C3D8R FEs (8-node reduced integration-type cuboid 
FEs) were assigned to the beam and the steel pads. The 
element size amounted to approximately 50 mm for the 
beam and to 25 mm for the steel pads. T3D2 FEs (two-node 
truss elements in 3D space) with the element size of 50 
mm were assumed for the rebars.

After computations, the results for vertical 
displacements (an exemplary map is shown in Fig. 18) and 
the images of cracking (see Fig. 19) were analysed.

4.2  Numerical bar model

The deflections of the beam analysed in ABAQUS were also 
calculated using a numerical bar model developed by the 
author on the basis of the Euler–Bernoulli beam theory. 
The procedure was carried out for the same concrete 
which had been assigned to the beam in the FE analysis. 
Figure 20 shows the beam structure and loading diagram.

The proposed method requires knowledge of beam 
deflections according to EN 1992-1-1 (2004). For example, 
the considered beam’s deflection calculated in accordance 
with EN 1992-1-1 (2004) for the load of 40 kN/m amounts to 
10.20 mm.

In order to calculate the beam’s deflection, taking 
into account the changes in the Young’s modulus, 
an intermediate cross section (between cross section 
behaviour in phases I and II) was determined. Such a cross 

Figure 16: Stress–strain characteristic entered into ABAQUS.
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section with a certain concrete tension zone is determined 
to take into account tension stiffening. When the obtained 
moment of inertia is substituted into the formula for the 
deflection of a homogenous prismatic bar, one gets the 
deflection value calculated according to EN 1992-1-1 (2004). 
Then the beam was divided into n=40 equal fragments. 
The bending moment along the length of each of them is 
constant and equal to the calculated bending moment in 
the middle of each of the fragments. Consequently, the 
diagram of bending moments for the whole beam has a 
stepped shape as shown in Fig. 21.

Each of the fragments has an identical moment 
of inertia (for the cross section mentioned above), but 
the Young’s modulus for each of them was calculated 
independently on the basis of the compressive stress 
in the cross section. The Young’s modulus for a given 
fragment is an integral mean of the Young’s modulus of 
the concrete in the compressed part of the cross section 
of the considered fragment. The graphical interpretation 
of the determination of the Young’s modulus for the given 
fragment of the beam is shown in Fig. 22., where: x – 
the extent of the compression zone, t – the extent of the 

Figure 17: Beam model in ABAQUS.

Figure 18: Beam deflection under load of 40 kN/m (deflection values in mm).
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tension zone in concrete, εcg – normal strain in top concrete 
fibres, εcd – normal strain in bottom concrete fibres, εs1 – 
normal strain in bottom reinforcement steel, εs2 – normal 
strain in top reinforcement steel, σc,g – normal stress in 
top concrete fibres, σc,d – normal stress in bottom concrete 
fibres, σs1 – normal stress in bottom reinforcement steel, 
σs2 – normal stress in top reinforcement steel, αe – a ratio 
of the Young’s modulus of the steel to the secant Young’s 
modulus of the concrete, acc. to EN 1992-1-1 (2004), Ei – 
the Young’s modulus for the i-th fragment of the beam, 
E1 – the Young’s modulus of the concrete along segment 
x1, E2,i – the Young’s modulus of the concrete at the end of 
segment x2 in the i-th fragment of the beam, x1 – the extent 
of the compression zone in which the Young’s modulus 
of concrete is constant, x2 – the extent of the compression 
zone in which the Young’s modulus of concrete is variable.

The Young’s modulus of the concrete for a given 
fragment of the beam was calculated from the eq. (8):

𝜀𝜀𝜀𝜀c̃in = 𝜀𝜀𝜀𝜀c − 𝜀𝜀𝜀𝜀0cel , (1) 

𝜀𝜀𝜀𝜀0cel = 𝜎𝜎𝜎𝜎c/𝐸𝐸𝐸𝐸0, (2) 

𝑓𝑓𝑓𝑓cm = 𝑓𝑓𝑓𝑓ck + 8 [MPa] ⇒ 𝑓𝑓𝑓𝑓ck = 𝑓𝑓𝑓𝑓cm − 8 [MPa], (3) 

𝑓𝑓𝑓𝑓ctm = 0.30𝑓𝑓𝑓𝑓ck
2/3, (4) 
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After moduli Ei for each fragment of the beam had been 
calculated, the deflection was calculated by adding up 
the displacements of the ends of all the fragments in one 
half of the beam. The displacements were calculated as for 
a cantilever loaded on its free end with a point moment 
(the bending moment is constant along the length of the 
fragment), taking into account the angle of rotation of the 
cantilever beginning (the cantilever support). For each 
fragment this angle is equal to the angle of rotation of the 
end of the preceding fragment. The starting point for the 
calculations is the first beam fragment (numbering as in 
Fig. 21) for which the angle of rotation of its beginning is 
equal to zero (φ0,1=0). It is the consequence that the angle 
of rotation of the axis of a simply supported beam at half of 
its span for a load uniformly distributed along the beam’s 
length is equal to zero.

The formula for the deflection of the beam with 
Young’s modulus variation taken into account is eq. (9):
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Figure 19: Image of beam cracking under load of 40 kN/m.

Figure 20: Structure and loading diagram – simply supported beam uniformly loaded along its whole length.



FEM modelling of the static behaviour of reinforced concrete beams considering the nonlinear behaviour ...    219

where: α‘ - the beam’s deflection with the variation of the 
Young’s modulus of the concrete taken into account, wi – 
the deflection of the particular beam fragments, Mi – the 
bending moment in the i-th fragment of the beam, lf – the 
length of a single fragment of the beam, Iy – the moment of 
inertia of the cross-section intermediate between phases I 
and II, φ0,i – the angle of rotation of the beginning of the 
i-th element, defined by the eq. (10):

𝜀𝜀𝜀𝜀c̃in = 𝜀𝜀𝜀𝜀c − 𝜀𝜀𝜀𝜀0cel , (1) 

𝜀𝜀𝜀𝜀0cel = 𝜎𝜎𝜎𝜎c/𝐸𝐸𝐸𝐸0, (2) 

𝑓𝑓𝑓𝑓cm = 𝑓𝑓𝑓𝑓ck + 8 [MPa] ⇒ 𝑓𝑓𝑓𝑓ck = 𝑓𝑓𝑓𝑓cm − 8 [MPa], (3) 

𝑓𝑓𝑓𝑓ctm = 0.30𝑓𝑓𝑓𝑓ck
2/3, (4) 

𝑓𝑓𝑓𝑓ctm = 2.96 MPa 

𝜀𝜀𝜀𝜀t̃ck = 𝜀𝜀𝜀𝜀t − 𝜀𝜀𝜀𝜀0tel, (5) 
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φ0,1=0.

The graphical interpretation of the determination of the 
beam’s deflection is shown in Fig. 23.

The deflection of the considered beam with the 
variable Young’s modulus of the concrete taken into 

account amounted to α‘=10.26 mm. Similar calculations 
were made for the loads of 45, 50, 55, 60 and 65 kN/m. The 
results are compiled in Table 2.

5  Discussion of results
Table 3 shows the deflection values calculated using the 
bar model (taking into account, respectively, the constant 
Young’s modulus of concrete according to EN 1992-1-1 
(2004) and the variable Young’s model according to the 
author’s own numerical model) and the ones obtained 
using the ABAQUS software for numerical FE analyses.

In addition, the data presented in Table 3 are 
visualized in Fig. 24.

Moreover, the effect of taking into account Young’s 
modulus variability on the design of reinforced concrete 
beams with regard to the allowable element deflection 

Figure 21: Stepped graph of bending moments with division of beam into fragments (dashed line shows actual shape of bending moments 
graph; dots on element’s longitudinal axis denote points of division of beam into fragments).

Figure 22: Normal strain, normal stress (for equivalent cross section) and Young’s modulus of concrete in cross section of given beam fragment.
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condition (only for immediate deflections) was 
determined. For this purpose the calculations according 
to EN 1992-1-1 (2004) were compared with the calculations 
made using the numerical bar model taking into account 
the variable Young’s modulus. According to EN 1992-1-1 
(2004), the total allowable characteristic load (together 
with the element’s self weight) which can be applied to 
the considered beam with regard to its load capacity 
amounts to 46.05 kN/m. For the load of 45 kN/m, the 
relative increment in deflection when the variable Young’s 
modulus is taken into account amounts to 1.28%. From the 
engineering calculations point of view such a difference is 
negligibly small.

Also the effect of taking into account the variable 
Young’s modulus of concrete on the increment in 
deflection relative to the values obtained in accordance 
with ACI Code 318-19 (2019) was checked. It was found that 

the algorithms contained in EN 1992-1-1 (2004) and ACI 
Code 318-19 (2019) (Branson’s theory) yield very similar 
results. The effective moment of inertia of the reinforced 
concrete beam’s cross section according to ACI Code 318-19 
(2019) is expressed by the eq. (11):
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where: Ie – the effective moment of inertia, Ig – the moment 
of inertia of an uncracked cross section, neglecting 
the reinforcement, Icr – the moment of inertia of a fully 
cracked cross section, Mcr – the cracking moment, Ma – the 
maximum unfactored bending moment in the element.

After appropriate transformations of the formulas for 
beam deflection according to EN 1992-1-1 (2004) the eq. 
(12), analogous to eq. (11), was obtained:

𝜀𝜀𝜀𝜀c̃in = 𝜀𝜀𝜀𝜀c − 𝜀𝜀𝜀𝜀0cel , (1) 

𝜀𝜀𝜀𝜀0cel = 𝜎𝜎𝜎𝜎c/𝐸𝐸𝐸𝐸0, (2) 

𝑓𝑓𝑓𝑓cm = 𝑓𝑓𝑓𝑓ck + 8 [MPa] ⇒ 𝑓𝑓𝑓𝑓ck = 𝑓𝑓𝑓𝑓cm − 8 [MPa], (3) 

𝑓𝑓𝑓𝑓ctm = 0.30𝑓𝑓𝑓𝑓ck
2/3, (4) 

𝑓𝑓𝑓𝑓ctm = 2.96 MPa 

𝜀𝜀𝜀𝜀t̃ck = 𝜀𝜀𝜀𝜀t − 𝜀𝜀𝜀𝜀0tel, (5) 

𝜀𝜀𝜀𝜀0tel 

𝜀𝜀𝜀𝜀0tel = 𝜎𝜎𝜎𝜎t/𝐸𝐸𝐸𝐸0, (6) 

 

𝑑𝑑𝑑𝑑t = 1 −
𝜎𝜎𝜎𝜎t
𝜎𝜎𝜎𝜎t0

, (7) 

𝐸𝐸𝐸𝐸i =
𝑥𝑥𝑥𝑥1𝐸𝐸𝐸𝐸1 + 0.5�𝐸𝐸𝐸𝐸1 + 𝐸𝐸𝐸𝐸2,i�𝑥𝑥𝑥𝑥2

𝑥𝑥𝑥𝑥 , (8) 

𝛼𝛼𝛼𝛼′ = �𝑤𝑤𝑤𝑤i

n

i=0

= ��0.5
𝑀𝑀𝑀𝑀i𝑙𝑙𝑙𝑙f2

𝐸𝐸𝐸𝐸i𝐼𝐼𝐼𝐼y
+ 𝜑𝜑𝜑𝜑0,i𝑙𝑙𝑙𝑙f�

n

i=1

, (9) 

𝜑𝜑𝜑𝜑0,i = 𝜑𝜑𝜑𝜑0,i−1 +
𝑀𝑀𝑀𝑀i−1𝑙𝑙𝑙𝑙f
𝐸𝐸𝐸𝐸i−1𝐼𝐼𝐼𝐼y

, (10) 

𝜑𝜑𝜑𝜑0,1 = 0. 

 

𝐼𝐼𝐼𝐼e = �
𝑀𝑀𝑀𝑀cr

𝑀𝑀𝑀𝑀a
�
3

𝐼𝐼𝐼𝐼g + �1 − �
𝑀𝑀𝑀𝑀cr

𝑀𝑀𝑀𝑀a
�
3

� 𝐼𝐼𝐼𝐼cr, (11) 

𝐼𝐼𝐼𝐼e,EC2 =
𝐼𝐼𝐼𝐼I𝐼𝐼𝐼𝐼II

�𝑀𝑀𝑀𝑀cr
𝑀𝑀𝑀𝑀Ek

�
2

(𝐼𝐼𝐼𝐼II − 𝐼𝐼𝐼𝐼I) + 𝐼𝐼𝐼𝐼I
, (12) (12)

where: Ie,EC2 – the effective moment of inertia with regard 
to EN 1992-1-1 (2004), II – the moment of inertia of an 
uncracked cross section, III – the moment of inertia of a 
fully cracked cross section, Mcr – the cracking moment, 
MEk – the maximum characteristic bending moment in the 
element.

The values of the effective moments of inertia 
according to, respectively, ACI Code 318-19 (2019) and 
EN 1992-1-1 (2004), depending on the load in the range of 
15–65 kN/m, are shown in Fig. 25.

Figure 23: Visualization of way of calculating deflections of 
particular beam fragments.

Table 2: Comparison of beam deflections for constant and variable Young’s modulus of concrete.

No. Load Bending effort 
of the element

Constant Young’s 
modulus

Variable Young’s 
modulus

Relative increment in 
deflection

α α’

[kN/m] [%] [mm] [mm] [%]

1 40 58 10.20 10.26 0.59

2 45 66 11.69 11.84 1.28

3 50 73 13.16 13.44 2.13

4 55 80 14.61 15.08 3.22

5 60 88 16.05 16.75 4.36

6 65 95 17.49 18.48 5.66
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In the considered case, the calculations of deflections 
in accordance with, respectively, EN 1992-1-1 (2004) and 
ACI Code 318-19 (2019) yield almost identical results since 
from the technical point of view the relative difference 
between the effective moment of inertia according to ACI 
Code 318-19 (2019) and the one according to EN 1992-1-1 
(2004) is negligibly small.

6  Conclusions
The results yielded by ABAQUS differ by 2.11–14.88% from 
the ones obtained using the proposed numerical method 
for the analysis of a bar beam model taking into account 

the variable Young’s modulus. The higher the load 
value, the larger the difference (except for loads between 
approximately 40 and 43 kN/m). This is due to the fact that 
the presented bar model analysis is an approximation and 
so it does not fully depict the actual nonlinear behaviour 
of the concrete in the cross section of a reinforced concrete 
beam. Moreover, in ABAQUS the beam was modelled 
as a 3D solid, whereby the deflections yielded by the 
FE analysis include deformations generated by all the 
stress components occurring in the element, whereas 
the proposed method is based on the Euler–Bernoulli 
beam theory and so takes into account only deformations 
generated by stress component σx.

Table 3: Comparison of deflections for bar model and FEM model.

No. Bar model FE model Relative difference 
between α› and αCDPLoad Constant Young’s modulus Variable Young’s modulus ABAQUS - CDP

α α’ αCDP

[kN/m] [mm] [mm] [mm] [%]

1 40 10.20 10.26 9.90 3.51

2 45 11.69 11.84 12.09 2.11

3 50 13.16 13.44 14.31 6.47

4 55 14.61 15.08 16.57 9.88

5 60 16.05 16.75 18.88 12.72

6 65 17.49 18.48 21.23 14.88

Figure 24: Maximum absolute deflection versus applied load for bar model taking into account constant and variable Young’s modulus and 
for ABAQUS FEM model.
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Moreover, it has been shown that when the variability 
of the Young’s modulus is taken into account, this has 
no significant effect on the design of reinforced concrete 
beams as regards the allowable deflection since when this 
variability is taken into account, the relative increment 
in deflection amounts to about 1.5% (in the case of the 
considered element). This applies to both the calculations 
done according to EN 1992-1-1 (2004) and the ones done 
according to ACI Code 318-19 (2019) since in the analysed 
case the two procedural algorithms yield similar results.

The aim of this research was to combine classical 
experimentation with numerical FE analyses. Tests were 
carried out on relatively small and inexpensive cylindrical 
concrete specimens and the concrete’s mechanical 
parameters determined in this way were used to create a 3D 
reinforced concrete beam model which took into account 
the nonlinear behaviour and failure of the concrete. As 
a result, it became possible to carry out simulations of 
the behaviour of the considered beam under mechanical 
load. Thanks to this approach, expenditures entailed 
by carrying out tests on the real element were avoided. 
Material tests are not enough. It is important to calibrate 
the FEM model on the basis of tests of model of the 
structure in half or full scale. The results of the FEM 
analysis can then be considered as reliable. Therefore, it 
should be remembered that the presented analysis is an 
introduction to further considerations. In addition, in the 

further beams’ tests the uniform load should be replaced 
with three-point or four-point bending.
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