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Abstract: The paper concerns the characteristic 
parameters of the selected isotropic failure criteria, i.e. 
Mohr–Coulomb, Drucker–Prager, Matsuoka–Nakai and 
Lade–Duncan. The parameters are determined directly 
from the failure criteria and stress measurements or 
by semi-theoretical approach, assuming that the soil 
obeys the associated flow rule and using the plane 
strain condition. In the latter case, the parameters can 
be expressed as functions of the plane strain internal 
friction angle, which is determined from measurements. 
The principal stress tensor components, corresponding to 
the soil peak strength and necessary to obtain the failure 
criteria parameters, are measured in a series of true 
triaxial, plane strain tests, on coarse Skarpa sand samples 
of different initial relative density, subjected to various 
confining pressures. 

Keywords: soil failure criteria; soil peak strength; plane 
strain conditions; true triaxial apparatus; plastic flow 
rule.

1  Introduction
Many different failure criteria, being part of soil 
constitutive models, can be found in the literature. The 
basic one to which all others are usually compared is the 
Mohr–Coulomb condition, due to its simplicity. It proved 
its usefulness in classic triaxial compression, where a 
cylindrical soil sample is subjected to an axisymmetric 
state of stress (s1, s2 = s3, Fig. 1a). However, the problem 
of soil strength is more complex when true triaxial stress 
conditions are considered, and the principal stresses s1, 
s2, s3 have different values (Fig. 1b). 

This paper considers the most frequently used 
isotropic soil failure criteria (yield surfaces): Mohr–
Coulomb, Drucker–Prager, Matsuoka–Nakai and Lade–
Duncan. The detailed descriptions of the selected criteria 
are in Drucker and Prager (1952), Lade and Duncan (1975), 
Matsuoka and Nakai (1974) and Matsuoka and Nakai 
(1985).

The research on soil failure continues, and except 
listed above, there are also other criteria proposed in the 
literature. Georgiadis et al. (2004), Houlsby (1986) or Liu 
et al. (2012) suggest a yield surface which is a combination 
of the criteria mentioned above. Lagioia and Panteghini 
(2014) present a reformulation of the original Matsuoka–
Nakai criterion to overcome the limitations which make 
its use in a stress point algorithm problematic. A novel 
soil strength criterion, where the cube root of principal 
stresses is constant, is proposed by Shao et al. (2017), and 
it shows that the Lade–Duncan criterion is not just an 
empirical one, as previously thought, but has a physical 
background.

Mohr–Coulomb failure condition is built on 
simplifying assumption that soil behaviour is governed by 
the difference between maximum and minimum principal 
stress (s1 - s3) and does not depend on the intermediate 
principal stress (s2). It is clear that such simplification may 
be valid in some special conditions only. The influence of 
the intermediate principal stress s2 on soil shear strength 
is discussed by Bishop (1971), Kulhawy and Mayne (1990) 
or Ochiai and Lade (1983). Barreto and O’Sullivan (2012) 
examined the effect of inter-particle friction (μ) and 
the intermediate stress s2 on the granular material’s 
response, using the discrete element method (DEM). They 
have shown that both parameters significantly affect 
the strength characteristics. DEM is also used by Li et al. 
(2017) to describe the behaviour of soil under complex 
stress state. They observed that the Bishop’s parameter b 
(Eq. (9)) significantly affects the non-coaxial behaviour of 
granular materials.*Corresponding author: Justyna Sławińska-Budzich, Institute of 
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The contribution of the intermediate principal 
stress s2 to the plane strain soil strength is particularly 
studied for practical reasons: to analyse longitudinal 
foundations, slopes, retaining walls and long excavations. 
Besides, many experimental techniques, like full-field 
displacement measurements by digital image correlation 
(DIC), are usually performed on rectangular plane strain 
models. Also ground flow problems, static liquefaction 
and instability are studied in plane strain conditions 
(Wanatowski and Chu, 2007; Wanatowski et al. 2010). 

Experimental investigations of dense granular soils 
have shown that the plane strain shear strength is higher 
than that in the axisymmetric conditions (Alshibli et al., 
2003). In the case of loose soils, there is no such difference; 
see Cornforth (1964), Lee (1970), Rowe (1969) and Schanz 
and Vermeer (1996). 

Soil strength can be defined depending on strain 
conditions (plane or three-dimensional), but also on the 
range of strains (peak or critical strength). In this paper, 
the peak soil strength is considered a measure of soil 
failure state.

1.1  Soil peak strength 

Peak strength is the maximum shear stress (maximum q 
value, Eq. (7)) that the soil can transfer. It is influenced by 
inter-particle friction, grain arrangement, grain crushing 
and soil dilation (Mitchell and Soga, 2005). Fig. 2 shows 
the exemplary results of soil shearing in plane strain 
conditions (details of the experiment are included in 
Tables 2 and 3). Fig. 2a defines the peak strength qmax on q - 

e1 (axial strain) graph, and Fig. 2b shows the corresponding 
set of principal stress values. The major principal stress s1 
is always the largest, whereas the lateral stress s2 is the 
intermediate one. In the paper, the soil mechanics sign 
convention is used (compression positive). The invariant 
q is defined under full stress conditions, including the 
meaning of s2; see formula (7).

Unlike critical soil strength, peak strength depends 
on the initial density of soil. Most of the research on soil 
peak strength uses Mohr–Coulomb condition and so the 
dependence of peak friction angle on soil density. Been 
and Jefferies (1985, 1986) have shown the relationship 
between the peak friction angle and the soil state 
parameter, defined as the difference in void ratio between 
the initial and steady-state, at the same mean effective 
stress.

Bolton (1986) studied the relationship between the 
mobilized friction angle, critical state friction angle 
and soil relative density in plane strain conditions and 
proposed the equation describing this relationship. 
Chakraborty and Salgado (2010) confirmed Bolton’s 
theory for low confining pressures (triaxial and plane 
strain tests). The effect of confining pressure on peak 
friction angle in the process of grain crushing is shown 
in Yamamuro and Lade (1996): as confining pressure 
increases, the peak friction angle decreases. Sadrekarimi 
and Olson (2011) or Sarkar et al. (2019) show, in turn, 
that there exists no clear relationship between the peak 
friction angle and the effective stress. 

The direct dependence of the friction angle on the 
initial soil porosity was shown already in Lee (1970), where 
analysed the data obtained in drained tests by Bishop 

a)              b) 

Figure 1: Two-dimensional and three-dimensional soil stress states: a) cylindrical sample in axisymmetric stress conditions, s2  = s3 and b) 
rectangular sample in true triaxial conditions, s1 321 óóó ≠≠  s2  321 óóó ≠≠  s3. 
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(1961) and Cornforth (1964). The tests were conducted at 
confining pressure of 275 kPa, both in axisymmetric and 
plane strain conditions. 

Fig. 3 shows their results, completed by the data 
obtained in this study for Skarpa sand at similar confining 
pressures between 278 kPa and 295 kPa (Tables 2 and 4). 
The same tendency: a decrease in the internal friction angle 
with growing sample porosity is observed in true triaxial 
tests on Skarpa sand under plane strain conditions, but 
no quantitative agreement is found, because they are two 
different soils.

1.2  Scope of the paper 

The main purpose of this study is to establish, both 
experimentally and semi-theoretically, the parameters 
characterizing different soil failure criteria, presented in 
Section 2, and their relationship to the internal friction 
angle in a given range of initial soil densities in plane 
strain state. 

The experimental way of finding the parameters 
involves determining the set of principal stress values s1, 
s2 and s3, corresponding to the soil peak strength (Fig. 2). 
The same parameters are calculated semi-theoretically 

a) b) 

Figure 2: The principal stress and axial strain curves for the selected test in plane strain conditions: a) q(e1) and b) s1(e1), s2(e1) and s3(e1).

  

Figure 3: Comparison of the results from drained triaxial and plane strain tests on sand [18] and true-triaxial tests on Skarpa sand. 
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using the approach proposed by Vikash and Prashant 
(2010). The associated flow rule and plane strain condition 
are used to express the parameters as functions of the 
plane strain friction angle. The basic difference between 
the experimental and semi-theoretical approach concerns 
the intermediate stress s2. In experiments, its value 
comes from the direct measurements; in calculations, it 
is determined on the base of the accepted assumptions 
and is different for each failure criterion. Validation of 
the Vikash and Prashant approach on the base of stress 
measurements is another purpose of the study. 

2  Characteristics of soil failure 
criteria
The soil failure criteria are usually formulated using stress 
invariants, independent of the choice of the coordinate 
system. In standard triaxial conditions, two invariants of 
the stress tensor are enough to describe the state of stress 
and any load path in the stress space. In the true triaxial 
state, three different principal stresses exist; therefore, 
one more invariant is needed. Often, combinations of the 
basic invariants of the stress tensor are used to formulate 
failure criteria.

Soil failure state is graphically represented, in 3D 
stress space, by the surface which separates the allowable 
stress states from the states of uncontrolled plastic flow 
and is called yield surface. It is accepted in this study that 
the yield surface corresponds to the stress states at which 
a soil reaches its maximum (peak) strength. The failure 
criteria considered in this paper describe the shape of the 
yield surface and differ in cross-section on the deviatoric 
plane, perpendicular to the hydrostatic axis s1 = s2 = s3 
(Fig. 4).

2.1  Basic invariants of the stress tensor

The mean stress p and deviator stress q are most frequently 
employed for axisymmetric stress conditions. In the case 
of the true triaxial state, they are usually completed by 
Lode angle q. In case of dry granular material invariants, 
p, q and q can be expressed using the basic invariants of 
total or deviatoric stress tensor, defined by Eqs. (1)–(5):

a) The basic invariants of the total stress tensor s:
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b) The basic invariants of the deviatoric stress 
tensor :
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The mean stress p, deviator stress q and Lode angle q are 
defined by Eqs. (6), (7) and (8). 
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Figure 4: Failure surfaces in the deviatoric plane, see Georgiadis 
et al. (2004). In plane strain conditions, Lode angle varies roughly 
from q = 10 ̊ to q = 20 ̊.
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In classical triaxial compression q = 0 ̊, in triaxial extension 
q =60 ̊, generally 0 ̊ < q < 60 ̊.

Lode angle is in some studies replaced by its 
alternative – the Bishop’s parameter b is defined by Eq. (9) 
and related to q by Eq. (10). 
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An analysis of experimental studies shows that values of b 
under plane strain conditions lie within the range of 0.18–
0.35 (assuming that 10 ̊ < q < 20 ̊) (Tatsuoka et al. 1986; 
Wanatowski and Chu 2007).

2.2  Failure criteria

Mohr–Coulomb (M-C) failure surface FM-C for non-
cohesive soil can be described by equation (11):
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where s1 and s3 are the maximum and the minimum 
principal stress and φM-C is the internal friction angle. On 
the deviatoric plane, the M-C criterion is represented by a 
hexagonal contour (Fig. 4) and φM-C is constant. FM-C does 
not depend on the intermediate stress s2.

Drucker–Prager (D-P) failure criterion was 
established as a generalization of the Mohr–Coulomb 
condition; see Drucker and Prager (1952), and this criterion 
for non-cohesive soil is described by equation (12):
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where I1 and J2 are given by Eqs. (1) and (4) and κD-P is the 
specific soil parameter. On the deviatoric plane, the D-P is 
represented by a circle (Fig. 4). 

Lade–Duncan (L-D) criterion – true triaxial 
experiments (especially in plane strain conditions) 
prove that shear strength for intermediate values of Lode 
angle (0 ̊ < q < 60 ̊) is higher than that resulting from the 
M-C criterion in the classical triaxial test; see Eekelen 
(1980), Lade and Duncan (1973) and Sławińska (2018). 

An empirical criterion which takes into account these 
observations is called Lade–Duncan (L-D) criterion (Eq. 
(13)):
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where κL-D is the specific soil parameter and I1, I3 are 
defined by Eqs. (1) and (3).

Matsuoka–Nakai (M-N) criterion is proposed on 
the basis of spatially mobilized plane concept (Matsuoka 
and Nakai, 1974). This criterion, based on theoretical 
considerations, is described by the relation (14):
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where κM-N is the specific soil parameter and I1, I2, I3 are 
defined by Eqs. (1)–(3).

3  Failure criteria parameters in 
plane strain conditions
Soil parameters φ, κD-P, κL-D and κM-N, appearing in the 
failure criteria, can be determined directly from Eqs. (11)–
(14) using the principal stress values corresponding to 
the peak soil strength measured experimentally or on the 
semi-theoretical way, where s2 is determined assuming 
the associated flow rule and the plane strain condition 
and only s1

max and s3 are measured.

3.1  Determination of failure criteria parame-
ters from direct stress measurements

Transforming equations (11)–(14) gives the expressions 
(15)–(18) which allow to determine the parameters of 
failure criteria using the measured values of s1

max, s2 and 
s3: 
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3.2  Determination of failure criteria parame-
ters by flow rule and plane strain condition

The associated flow rule comes from the rigorous 
formulation of the plasticity theory, while the non-
associated one is only semi-theoretically postulated. The 
latter was introduced for soils to reduce the mismatch 
between measured and theoretically predicted volumetric 
strains in element tests. However, the solution of this 
particular problem introduces another problem, namely 
the non-coaxiality of the stress and strain tensors. It 
is difficult to measure experimentally and limits the 
application of the upper-bound theorem, based on the 
assumption of the associated flow rule and frequently 
used in limit analysis solutions of soil mechanics 
boundary value problems (e.g. Deusdado et al., 2016, di 
Santolo et al., 2012).

As a result, both the associated and non-associated 
flow rules are still used to model soil behaviour, depending 
on the nature of the problems studied. 

Liu (2013) shows various results of triaxial 
compression tests on sands and their simulations using 
both the associated and non-associated flow rules. Similar 
simulations for more complex stress paths in the p - q - q  
space can be found in Chan (1988) and Ling and Liu 
(2003). Their research demonstrates that the associated 
flow rule predicts well the results of triaxial compression 
tests for medium and medium-dense soils in the pre-peak 
stage and under drained conditions. The non-associated 
flow rule, on the other hand, gives better results for the 
unstable response of saturated loose sand and under 
undrained condition. According to these findings, it is 
justified to use the associated flow rule to analyse the 
behaviour of medium and medium-dense sand samples 
up to the peak strength, if volume changes are still 
significant and no distinct localization occurs. 

Plastic flow rule can describe soil deformation at 
failure state. Its general formulation, as a non-associated 
flow rule, is given by Eq. (19):  
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where ije means the strain rate tensor, λ is the scalar 
coefficient and g is the plastic potential. The special case 
of the non-associated is the associated flow rule, where 
the plastic potential g coincides with the yield surface F (g 
= F). In such a case, the plastic potentials for D-P, M-N and 
L-D criteria are given by Eqs. (12)–(14), and it is possible 
to determine parameters κD-P, κL-D and κM-N theoretically by 
solving the set of equations (20). The set comes from the 
assumption of soil failure state (F = 0, where F means FD-P, 
FL-D or FM-N) and the plane strain condition de2 = 0, which 
substituted to the flow rule (19) gives 0.=

∂
∂

2

F
s

 Such way of 
calculating parameters κD-P, κL-D and κM-N was proposed by 
Vikash and Prashant (2010).
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In the Appendix, the set (20) is presented in the expanded 
form, specific for each failure condition. The set can be 
completed by Eq. (21), valid in plane strain conditions, to 
express κD-P, κL-D and κM-N as functions of the internal friction 
angle φps.
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To solve (20), first the intermediate principal stress σ2 is 
determined as a function of σ1 and σ3, separately for D-P, 
L-D and M-N yield conditions:
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It can be seen from Eqs. (22)–(24) that each condition 
gives the different expression for the intermediate stress 
s2. Finally, the following expressions for κD-P , κL-D and κM-N 
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are obtained from the set (20), taking into account  Eqs. 
(21)–(24):
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4  True triaxial tests in plane strain 
conditions
The series of tests in true triaxial apparatus in plane strain 
conditions were performed to verify both approaches 
of determining failure criteria parameters. Limiting the 
strains to plane (two-dimensional) case induces some 
partly controlled three-dimensional stress state, where  
s2 comes from the soil reaction and cannot be applied a 
priori, but has to be measured.  The non-zero s2 in plane 
strain condition has always been a problem in interpreting 
the results of standard 2D soil mechanics tests. 

The tests in this study were carried out on Skarpa 
sand samples at different confining pressures and initial 
void ratios. All the tests were performed in dry conditions. 
Basic properties of Skarpa sand are collected in Table 1. 

4.1  Test procedure

The plane strain tests, with deformation fixed in x2 
principal stress direction (e2 = 0, Fig. 5), were carried out 
in true triaxial apparatus. The Electro-Mechanical True 
Triaxial Apparatus (EMTTA) is manufactured by the British 
company GDS Instruments Ltd. and is shown in Fig. 6. 
Plane strain condition can be imposed on the rectangular 
samples of 150 × 75 × 75 mm dimensions in this type of true 
triaxial apparatus by fixing the position of the side platens 
to prevent their movement (Fig. 7). Depending on the way 
the stresses are exerted on the test specimen, EMTTA is 
mixed type, with flexible membrane (horizontal stress) 
and rigid end platens (axial stress).

Fig. 7a shows the sample ready for the test, with 
the side platens fixed. After installing the sample in the 
testing chamber (measurement cell, Fig. 6), its doors are 
closed and it is filled with water, then the side platens are 
gently pressed against the specimen until the difference 
between horizontal stresses s2 - s3 is about 2–3 kPa, to 

Figure 5: Layout of the soil sample under plane strain conditions in 
EMTTA.

Figure 6: Components of EMTTA, used in the study.

Table 1: Parameters of Skarpa sand.

Specific density [kg/m3]  2650

Mean particle size [mm] D50 - 0.42

Uniformity coefficient  [ - ] U = 2.5

Minimum void ratio [ - ] emin = 0.432

Maximum void ratio [ - ] emax = 0.677
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secure the proper contact. To reduce friction between the 
membrane and the side plates, the plates are lubricated 
with a special lubricant.

Specimen base pedestal is connected to the pressure/
volume controller (back pressure controller, Fig. 6), which 
is used to apply and measure the pore water pressure 
and volume changes. Cell pressure is controlled by a 
pneumatic-hydraulic system (a cell pressure controller), 
where required value can be set. In addition, TTA is also 
equipped with a cell pressure transducer (see Fig. 6) 
located inside the chamber.

Vertical actuators shown in Fig. 6 are used to apply 
the major s1 principal stress. The horizontal stress s3 is 
applied through the water pressure in the chamber, and s2 
is recorded by a gauge located on vertical actuators. 

In order to measure the specimen displacements in 
x3 direction, two proximity transducers are installed on 
the inner side of both cell doors, exactly at their centre 
(Fig. 7b). When the sample deforms, the changes in a 
distance between the square aluminium plate (Fig. 7a), 
adhered to the sample and the transducers, are recorded, 
giving the local value of the displacement. Based on 
this measurement, e3 is calculated. Displacement in x1 
direction is measured by LVDT transducers attached to 
each actuator; the vertical strain e1 is calculated on its 
base. 

Soil samples are prepared in a membrane-lined split 
mould by air pluviation. This method involves preparing a 
soil sample using a funnel with a nozzle of approximately 
5 mm. The weighed sand is placed in the funnel at the 

selected distance from the centre of the mould. The height 
of the funnel and the mass of sand are determined by ‘trial 
and error’ to obtain the appropriate relative density (Li et 
al., 2018).

Eleven tests were carried out according to the same 
procedure. The tests consisted of two phases:
a) Phase 1 (isotropic compression): the sample is loaded 

isotropically by increasing water pressure in the 
testing chamber (s3

c in Table 2). This is not carried 
out under plane strain conditions. The side plates, 
pressed against the sample, move along with it, while 
a constant set value of lateral stress (about 2–3 kPa) is 
maintained.

b) Phase 2 (shear): the sample is vertically loaded with a 
constant vertical displacement rate of 15 mm/hour at 
constant chamber pressure (s1 = s3

c = const)  in plane 
strain conditions.

The samples’ porosities were between 0.316 and 0.36 (the 
relative densities ( )c

DIexpκ  after isotropic compression between 
0.465 and 0.878), and thus medium-dense, dense and 
very dense samples were tested. The applied confining 
pressures were in a range of 50–400 kPa. 

4.2  Measurement results 

Table 2 contains the initial conditions of all tested 
samples: the initial void ratio at the start of Phase 1 (e), 
the void ratio and porosity after isotropic compression, at 

a)       b)      

Figure 7: a) The GDS EMTTA chamber with a sample prepared for the test. The role of the side plates is to prevent soil deformations in the 
x2direction, b) proximity transducer on the doors of the measurement cell (test chamber).
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the beginning of Phase 2 (ec, nc) and the applied confining 
pressure (s3

c). Also, the relative density ID, defined by Eq. 
(28), is given.
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where emax and emin are maximum and minimum void 
ratios determined in the Proctor test. The porosity nc is 
calculated on the base of a void ratio, using Eq. (29):
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Table 2: Initial test conditions.

Test e ID sc
3 [kPa] ec I( )c

DIexpκ nc

009_17_MC_5 0.585 0.376 391 0.563 0.465 0.36

033_17_MC_14 0.559 0.482 293 0.548 0.527 0.354

012_18_MC_21 0.541 0.555 292 0.532 0.592 0.347

013_18_MC_22 0.519 0.645 146 0.514 0.665 0.339

010_18_MC_19 0.517 0.653 195 0.508 0.690 0.337

001_18_MC_15 0.521 0.637 191 0.499 0.727 0.333

010_15_MC_1 0.496 0.739 278 0.490 0.763 0.329

009_18_MC_18 0.488 0.771 292 0.480 0.804 0.324

008_18_MC_17 0.489 0.767 295 0.476 0.820 0.322

028_17_MC_12 0.467 0.857 52 0.462 0.878 0.316

031_17_MC_13 0.469 0.849 99 0.462 0.878 0.316

Figure 8: Results of the experimental tests listed in Table 1: deviator 
stress as a function of the axial strain q(e1).

Figure 9: Results of the experimental tests listed in Table 1: 
maximum principal stress as a function of the axial strain s1(e1). 
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The basic results of the eleven tests listed in Table 1 are 
gathered in Figs 8–11. Each of the figures shows the full set 
of curves for all the tests: deviator stress (Fig. 8), maximum 
principal stress (Fig. 9), principal stress in the direction 
of fixed strain (Fig. 10) and volumetric strain (Fig. 11), as 
functions of the axial strain. 

The sets are highly varied because they correspond to 
the samples of different densities (medium to very dense), 
tested at different confining pressures (Table 2). The axial 
strain at which the peak strength occurs is determined for 
each test on the base of Fig. 8, and then, the corresponding 
values of s1

max, s2 and s3 are established, like it is 
demonstrated in Fig. 2. 

Fig. 11 shows that dilative behaviour is observed in 
all the tested samples. The volumetric strain reaches the 
maximum (compression is positive), which is typical 
for dense samples. The maximum value of the deviator 
stress q was observed in test ‘009_17_MC_5’ (Fig. 8). The 
corresponding axial stress equals s1

max = 1402 kPa (Fig. 
9). At this range of stress, no grain crushing is possible in 
case of silica sand, so it is accepted that no grain crushing 
occurred in the tests; see Yang et al. (2010). Table 3 
presents the measured values of s1

max, s2, s3, defining the 
peak strength of each sample, and p, q, q and b, calculated 
on their base.

Figure 10: Results of the experimental tests listed in Table 1: 
principal stress in the direction of fixed strain (e2 = 0) as a function 
of the axial strain s2(e1).

Figure 11: Results of the experimental tests listed in Table 1: 
volumetric strain as a function of the axial strain ev(e1).

Table 3: Characteristics of peak strength state for the tested samples.

Test s1
max

 

[kPa]
s2 

[kPa]
s3

[kPa]
p 
[kPa]

q 
[kPa]

b 
[ - ] 

q 
[  ̊ ]

009_17_MC_5 1402 653 391 815 909 0.26 14.46

033_17_MC_14 1072 479 293 615 705 0.24 13.21

012_18_MC_21 1184 459 292 645 821 0.19 10.14

013_18_MC_22 678 262 146 362 485 0.22 11.97

010_18_MC_19 902 355 195 484 642 0.23 12.46

001_18_MC_15 870 332 191 464 621 0.21 11.35

010_15_MC_1 1291 529 278 699 914 0.25 13.76

009_18_MC_18 1483 528 292 768 1092 0.20 10.78

008_18_MC_17 1396 506 295 732 1012 0.19 10.40

028_17_MC_12 287 109 52 149 212 0.24 13.44

031_17_MC_13 508 191 99 266 372 0.22 12.38
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Figs 8–11 represent the whole course of the 
experimental tests, showing pre- and post-peak behaviour. 
Only the pre-peak part of the tests, defined on the basis 
of Figs 8–11, is analysed in the paper. Before the onset of 
localization, the deviator peak strength (not the critical 
strength) is used. The literature shows that localization 
is observed after the deviator peak strength has been 
reached, e.g. Leśniewska et al (2012) and Desrues and 
Viggiani (2004). 

Fig. 12 shows the relationship between principal stress 
components, corresponding to the peak soil strength q: 

s1
max (s3) and s2(s3), which can be estimated with sufficient 

accuracy by straight lines (r = 0.94 and r = 0.9, where r is 
Pearson’s coefficient). Fig. 12 also confirms that in all the 
tests, the measured s2 is always the intermediate principal 
stress. 

Fig. 13 collects the values of Lode angle calculated 
using Eq. (8) and the data from Table 3, and it suggests 
that there is no statistically significant difference in Lode 
angle due to varying principal stress s2 or confining 
pressure s3. The Lode angle is considered constant at  q = 
12.6 ̊ (calculated as an arithmetic average), but its scatter 

Figure 12: Relations between principal stress components, 
corresponding to peak soil strength: s1

max (s3) and s2(s3).
Figure 13: Relation between Lode angle q and intermediate stress s2.

Table 4: Characteristic parameters of Drucker–Prager, Matsuoka–Nakai and Lade–Duncan soil failure criteria, obtained from direct stress 
measurements (A) and the associated flow rule assuming plane strain conditions (B).

Test
A. Direct stress measurements
Eqs. (15)–(18)

B. Flow rule and plane strain condition
Eqs. (25)–(27)

009_17_MC_5 34.3  0.21 11.7 40.9 1181.5 740.4 896.5 0.179 11.7 39.6

033_17_MC_14 34.8  0.22 11.9 41.7 904.8 560.4 682.5 0.181 11.8 40.0

012_18_MC_21 37.2  0.25 12.5 45.7 1007.5 588.0 738 0.190 12.3 42.5

013_18_MC_22 40.2  0.26 13.2 49.4 583.8 314.6 412 0.202 13.1 46.3

010_18_MC_19 40.1  0.26 13.1 49.0 776.3 419.3 548.5 0.201 13.1 46.2

001_18_MC_15 39.8  0.26 13.1 49.0 747.8 407.6 530.5 0.200 13.0 45.7

010_15_MC_1 40.2  0.25 13.1 48.6 1111.5 599.1 784.5 0.202 13.1 46.3

009_18_MC_18 42.1  0.27 13.8 53.4 1287.1 658.1 887.5 0.209 13.7 49.1

008_18_MC_17 40.6  0.27 13.4 50.9 1203.9 641.7 745.5 0.203 13.2 46.9

028_17_MC_12 43.9  0.27 14.3 55.3 251.0 122.1 169.5 0.215 14.3 52.0

031_17_MC_13 42.4  0.27 13.8 52.9 441.3 224.3 303.5 0.209 13.7 46.5



248    Justyna Sławińska-Budzich

around this value is considerable, which is probably 
related to the unavoidable problem of forming soil samples 
of repeatable structure. The value of the Lode angle may 
also depend in a more complex way on the initial density 
of the soil sample or confining pressure. This problem is 
open.

The constant and relatively low value of Lode angle 
obtained for all the tests from Table 3 confirms that in 
plane strain conditions, the influence of the intermediate 
stress s2 on the soil peak behaviour is limited and does not 
depend on the confining pressure. The question remains, 
how to estimate the magnitude of this influence.

Values of parameters (φps), ,  and ,  
obtained from Eqs. (15)–(18) by substituting s1

max, s2 and 
s3, which correspond to the peak strength of the tested 
samples, are collected in Table 4, column ‘A’. Values of 
parameters κD-P, κL-D and κM-N, calculated from Eqs. (25)–

(27) by substituting s1
max and s3, are given in Table 4, 

column ‘B’. 

5  Discussion of results
The data included in Table 4 are presented in Figs 
14–17. First, the relationship between the intermediate 
principal stress σ2 for Drucker–Prager, Matsuoka–Nakai 
and Lade–Duncan criteria, obtained from Eqs. (22)–(24) 
and measured in the experiments, is analysed, and then 
Vikash and Prashant solution, given by Eqs. (25)–(27), is 
verified experimentally.

5.1  Intermediate stress s2

Fig. 14a presents s2
D-P, s2

M-N and s2
L-D as functions of the 

experimental s2, taken from Table 3. A perfect fit between 
the calculated and measured values would mean that they 
lie on the dashed line s2

calc = s2
exp, shown in the figure. 

A linear relationship between the calculated and 
measured intermediate stress s2 for all three selected 
criteria is found, but only Matsuoka–Nakai is close to 
the perfect fit. The ratio R = s2

calc / s2
exp plotted in Fig. 14b 

shows three constant trends: 2.15 for Drucker–Prager, 1.52 
for Lade–Duncan and 1.17 for Matsuoka–Nakai condition, 
with perfect fit equal to 1. It means that the Vikash and 
Prashant (2010) approach, highly overestimates the 
influence of the intermediate stress in plane strain 
conditions for Drucker–Prager, gives about 50% 
overestimation for Lade–Duncan and is close to measured 
values for Matsuoka–Nakai criterion.

a)

b)

Figure 14: The intermediate stress s2, obtained for Drucker–Prager 
(D-P), Matsuoka–Nakai (M-N) and Lade–Duncan (L-D) failure criteria, 
assuming plane strain condition and the associated flow rule, as 
function of the measured s2 (Table 3): (a) s2

calc (s2
exp) and (b) R(s2

exp), 
where R = s2

calc/ s2
exp. 

Figure 15: Dependence of the intermediate stress s2 (Tables 3 and 4) 
on the initial relative density of Skarpa sand. 
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Fig. 15 shows the dependence of the intermediate 
stress s2, measured and calculated by Eqs. (25)–(27), on 
the initial relative density of Skarpa sand. There is no 
clear tendency visible because the tests presented in the 
paper were performed at different confining pressures. If 
the ratio of s2 to the confining pressure s3

c is examined 
instead (Fig. 16), the linear trends appear both in the 
case of measured and calculated values and again the 
Matsuoka–Nakai criterion is closest to reality.

5.2   Experimental validation of Vikash and 
Prashant approach

Parameters φps, κD-, κL-D and κM-N,  obtained by Eqs. (15)–(18), 
requiring knowledge of the full set of principal stresses s1, 
s2 and s3, and by Vikash and Prashant approach, which 
requires measurement of two principal stresses only (s1 

Figure 16: Dependence of the ratio of intermediate stress s2 to confining 
pressure s3 (Table 4) on the initial relative density of Skarpa sand. 

a)        b)

c)         d)

Figure 17: Parameters of Mohr–Coulomb (M-C), Drucker–Prager (D-C), Matsuoka–Nakai (M-N) and Lade–Duncan (L-D) failure criteria 
depending on soil relative density: (a) friction angle j, (b)–(d) comparison of κD-P, κL-D and κM-N, obtained by Eqs. (16)–(18) (full stress state 
measurement) and Eqs. (25)–(27) (plane strain condition – Vikash and Prashant approach).
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and s1), are shown in Fig. 17, as functions of the relative 
density ID, for all the true triaxial tests (Tables 2–4). 

It is possible in Vikash and Prashant approach to 
replace s1 and s3 by the internal friction angle φps (Eqs. 
(25)–(27)). The internal friction angle for plane strain 
condition can be obtained directly from the relation (21) 
and play the role of the independent variable that specifies 
κD-P, κL-D and κM-N. 

Fig. 17(a) shows the relation between the M-C friction 
angle φps and the relative density ( )c

DIexpκ  of Skarpa sand, 
which is linear within the given density range, thus 
allowing for the equivalent presentation of κD-P, κL-D and 
κM-N as functions of φps or ( )c

DIexpκ  independent variables. ( )c
DIexpκ  

was selected for Fig. 17(b)–(d). The figure confirms the 
previous finding that the Vikash and Prashant approach 
gives a very good result for the Matsuoka–Nakai failure 

criterion – the κM-N values obtained in this case by the two 
approaches almost coincide in Fig. 17c. 

There is no such a good fit in case of Drucker–Prager 
and Lade–Duncan conditions. As Matsuoka–Nakai 
criterion is most commonly used to estimate soil strength 
in complex stress states, this finding can help to determine 
parameters necessary for numerical analysis of plane 
strain problems in a relatively simple way. 

All three failure conditions give linear increase of κM-N, 
κD-P and κM-N with soil relative density, regardless of the 
way they are obtained, as expected.

The linear fits for the failure criteria parameter κexp, 
obtained from the direct stress measurement of s1

max, s2 
and s3 (Table 3) and expressed as a function of the relative 
soil density (ID) or  the plane strain friction angle φps, are 
given in Tables 5 and 6, respectively. 

Values of Pearson’s correlation coefficient r in Tables 
5 and 6 lay between 0.970 and 0.997, which proves very 
good linear fit in each case. The Statistica software was 
used to determine the fits by the least-squares method. 

5.3  Quality of κD-P, κL-D and κM-N approximation

To estimate more quantitatively the difference between 
the two approaches of determining the failure criteria 
parameters, two statistical measures are employed:vκ and 
vs2

.

vκ is a measure of the average relative difference between 
κflow rule = κ(s1, s3) = κ(φps)and κexp (Table 4) and is given by 
the formula (30):
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where ‘n’ means number of tests (n = 11). 
Similarly, vs2

 is the average relative difference between 
the semi-theoretically and experimentally validated s2, 
and it is calculated according to the relationship (31):
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Table 5: The linear fits κexp (( )c
DIexpκ ) and the corresponding Pearson’s 

correlation coefficients.

Linear fit Pearson’s 
coefficient r

Drucker–Prager  = 0.16( )c
DIexpκ  + 0.13 rD-P =  0.94

Lade–Duncan  = 26.33( )c
DIexpκ  + 31.64 rL-D = 0.96

Matsuoka–Nakai  = 9.20( )c
DIexpκ  + 5.48 rM-N = 0.96

Table 6: The linear fits κexp(φps)and the corresponding statistics 
Pearson’s correlation coefficients.

Linear fit Pearson’s coefficient r

Drucker–
Prager

 = 0.006353 φps + 
0.001497

rD-P =  0.970

Lade–
Duncan

 = 1.5 φps - 10.613 rL-D = 0.993

Matsuoka–
Nakai

 = 0.2605 φps + 2.767 rM-N = 0.997

Table 7: Average relative difference of parameters κ and 
intermediate principal stress s2, determined by the two approaches: 
full set of principal stresses and Vikash and Prashant proposal, for 
Drucker–Prager, Lade–Duncan and Matsuoka–Nakai failure criteria.

vκ
vs2

Drucker–Prager % 21.21PD =−
κv = 21.21% % .0191PD

2
=−

sv =119.0%

Lade–Duncan % 5.99DL =−
κv  = 5.99% % .555DL

2
=−

sv =55.5%

Matsuoka–Nakai % 0.66NM =−
κv = 0.66% % .419NM

2
=−

sv = 19.4%
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Table 7 shows the summary of the calculations carried out 
for each of the criteria.

The smallest average differences are for Matsuoka–
Nakai criterion ( % 0.66NM =−

κv = 0.66%, % .419NM
2

=−
sv = 19.4%) and the 

biggest in the case of Drucker–Prager ( % .0191PD
2

=−
sv = 21.21%, 

% .0191PD
2

=−
sv = 119.0%). The relatively big average relative 

difference of the intermediate stress s2 has little influence 
on the corresponding difference of κM-N, being less than 
1%. 

6  Summary and conclusions
 – A series of shear tests on Skarpa sand was carried out 

in true triaxial apparatus in plane strain conditions. 
Experiments covered a wide range of initial soil 
densities and confining pressures, with the initial 
relative density index ( )c

DIexpκ  80.465,0.87∈c
DI 0.465, 087880.465,0.87∈c

DI  and the 
confining pressure s3

c kPa 391 kPa, 52c
3 ∈ó 52 kPa, 391 kPakPa 391 kPa, 52c

3 ∈ó . The linear 
dependence of the friction angle psjps on the initial ( )c

DIexpκ  
is confirmed. 

 – The semi-theoretical approach proposed by Vikash 
and Prashant (2010) is compared with the results of 
the calculations based on the measurements of the 
full set of principal stresses. Both approaches differ 
in the way of obtaining the value of intermediate 
stress s2, which can be measured independently or 
calculated on the base of s1 and s3 measurement, 
assuming associative flow rule.

 – The most important conclusion for soil testing in plane 
strain conditions is that using Matsuoka–Nakai failure 
condition, the associated flow rule takes properly into 
account the effect of non-zero intermediate stress s2, 
without a need to measure it.

 – Linear fits to describe the relationship between κexp  
and φps for each failure criterion have been obtained. 
The values of Pearson’s coefficient r lay between 0.970 
and 0.997, which proves a very good linear fit in each 
case. The best linear fit characterizes Matsuoka–
Nakai criterion and rM-N = 0.993. It has been shown 
that relation ( )c

DIexpκ  is also linear (the Pearson’s 
coefficient r lay between 0.94 and 0.96).

 – The constant and relatively low value of Lode angle 
obtained for all the TTA tests confirms that in plane 
strain conditions, the influence of the intermediate 
stress s2 on the soil peak behaviour is limited and does 
not depend significantly on the confining pressure. 
The trend for Lode angle is constant (q = 12.16 ̊) with 
some statistical scatter. This value is consistent with 

Tatsuoka et al. (1986) and Wanatowski and Chu 
(2007).
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code generated or used during the study appear in the 
published article.
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where 

( ) ( )( )( ) 32132131323121 σσσσσσσσσσσσσσA ++++++=                (A12) 
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and by solving this system of equations, we get: 

2
31D-L

2
σσσ +

=
           (A8)  

( )
31

2
131

2
3

DL 4
227
σσ

σσσσκ ++
=− ,               (A9) 

assuming (A5), we have: 

psc

κ
ϕ2DL sin4

27
−

=−                     (A10) 
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where 
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and by solving (A11), we get: 
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and by solving this system of equations, we get: 
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where 
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and by solving (A11), we get: 
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and by solving this system of equations, we get: 
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where 
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and by solving (A11), we get: 
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and by solving this system of equations, we get: 
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and by solving (A11), we get: 
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Assuming (A5), we have: 
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