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Abstract: In this study, a novel method is proposed 
to optimize the reinforced parameters influencing the 
bearing capacity of a shallow square foundation resting on 
sandy soil reinforced with geosynthetic. The parameters 
to be optimized are reinforcement length (L), the number 
of reinforcement layers (N), the depth of the topmost layer 
of geosynthetic (U), and the vertical distance between 
two reinforcement layers (X). To achieve this objective, 
25 laboratory small-scale model tests were conducted on 
reinforced sand. This laboratory-scale model has used 
two geosynthetics as reinforcement materials and one 
sandy soil. Firstly, the effect of reinforcement parameters 
on the bearing load was investigated using the analysis 
of variance (ANOVA). Both response surface methodology 
(RSM) and artificial neural networks (ANN) tools were 
applied and compared to model bearing capacity. Finally, 
the multiobjective genetic algorithm (MOGA) coupled with 
RSM and ANN models was used to solve multi objective 
optimization problems. The design of bearing capacity 
is considered a multi-objective optimization problem. In 
this regard, the two conflicting objectives are the need 
to maximize bearing capacity and minimize the cost. 
According to the obtained results, an informed decision 
regarding the design of the bearing capacity of reinforced 
sand is reached.

Keywords: Bearing capacity; model tests; square footing; 
geosynthetic; RSM; ANN; multi objective optimization.

1  Introduction
The major problem encountered in building shallow 
foundations resting on loose sand deposits is often the 
low bearing capacity and excessive settlement. This issue 
could directly affect the durability and  performance of 
the superstructure. As a possible solution to this problem, 
replace loose soil with suitable backfill material, increase 
the area of ​​the footings, or use both keys simultaneously. 
Indeed, these techniques improve the mechanical 
properties of the foundation system but with significant 
construction costs. So, new methods with a suitable 
solution can be proposed. To ensure good technical 
qualities at an economical price, it will be using soil 
reinforcement with geosynthetics [1].

The benefit of using geosynthetic reinforcement in 
geotechnical engineering projects is to improve the quality 
of the subgrade of shallow foundations and contribute 
to an increase in bearing capacity and limitation of 
settlement.  This technique has emerged not today, but 
over the last three decades. During this period, several 
works have been carried out either in the laboratory on 
physical models or as in situ tests to study these new 
reinforcement materials [2].

The first study on the influence of a strip metallic 
reinforcement to improve the bearing load of a strip 
foundation was conducted by Binquet and Lee [3, 4]. 
Then, many investigations have been conducted using a 
laboratory-scale model for the object to improve the load 
capacity of shallow foundations resting on reinforced 
sand. Several materials were used as reinforcement, such 
as geotextile layers [5–7], geogrids[8–14], strips of metal[15, 
16], fibers[17, 18], geocell [19, 20], and geosynthetic 
reinforcement having wraparound ends [21, 22].

The main objective of the previous works is to study 
the influence of some parameters related to the bearing 
capacity of reinforced footing, such as the length of the 
reinforcements, their number, the depth of the first 
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layer, and the vertical spacing between layers. The 
determination of the optimum values of these parameters 
was also investigated through parametric studies. For 
example, Fragaszy and Lawton [23] studied the influence 
of the reinforcement length on the bearing capacity of 
shallow footing resting on reinforced sand using scale 
model tests. The obtained results from this work clearly 
show that an improvement of the load capacity of footing 
with length varies between 3B and 7B, with B representing 
the footing width. Concerning the embedment of the 
first reinforcement layer, Yetimoglu et al. [24] conducted 
studies on footing resting on sandy soil and used only 
one geogrid layer as reinforcement; they observed that 
the improvement in bearing capacity occured at an 
optimum depth of 0.3B.The number of layers was studied 
by Akinmusuru and Akinbolade [25] using geotextile 
reinforcement to increase the load capacity of a shallow 
square foundation. They confirmed that the use of layers 
reinforcement greater than three had no significant 
influence on the bearing capacity. So they concluded that 
the suitable number of reinforcement layers was three 
with an embedment of the first layer which did not exceed 
the value of 0.5B (where B is the footing width).

It should be noted that several studies mentioned 
above regarding the optimization of parameters of 
reinforcement for bearing capacity have focused only on 
the parametric studies rather than mathematical models 
with the use of sophisticated optimization techniques. 
Therefore, advanced predictive methods seem very 
helpful in dealing with this problem. Therefore, the use 
of predicted techniques, such as the response surface 
method (RSM) [26], artificial neural networks (ANN) [27], 
genetic algorithms (GA) [28, 29], and neuron fuzzy logic 
[30], is recommended for the development of a relationship 
between bearing capacity and designed parameters. 

RSM has been used with great success in many fields 
of civil engineering. It was used to simulate material 
behavior, optimize of structural problems, for experimental 
estimation, and to estimate concrete mix proportions. 
Lafifi et al. [31]  used the RSM coupled with the Taguchi 
orthogonal array to optimize the geotechnical parameters of 
the Mohr–Coulomb model using pressuremeter numerical 
results. Chana Phutthananon et al. [32] also used the RSM 
coupled with GA as a multiobjective optimization tool to 
optimize the shape of deep T-shaped mixing and cement 
deep mixing. The modeling of the micaceous soil was 
achieved by Zhan et al. [33] by using RSM based on linking 
the unconfined compressive strength with some additives. 
Recently, Benayoun et al. [34] used this tool to investigate 
the influence of geometric parameters of a nailed wall and 
identify the influenced parameters on their stability.

Also, the ANN method has shown great success in 
geotechnical engineering problems. It was in the early 90s 
that Sasmal and Behera [27] made the first application of 
ANNs. Kuo et al.[35] used this tool to predict the value of 
the bearing capacity of a strip foundation resting on multi-
layered cohesive soil using multi-regression models. 
Jahed Armaghani et al.[36] studied the ANN coupled 
with the particle swarm optimization (PSO) algorithm for 
modeling the bearing load of socketed piles using 132 data 
sets. Beheraet al. [37] predicted the value of the bearing 
capacity of the strip foundation resting on a horizontal 
surface and subjected to an eccentric load. Sahuet al.[38] 
estimated the bearing capacity of strip foundations resting 
on reinforced soil and subjected to an inclined load by the 
developed ANN model equation. Acharyya and Dey [39] 
and Acharyyaet al. [40] presented the prediction of the 
bearing capacity of a strip foundation located in front of 
a slope using ANN. Sethyet al.[41] predicted the bearing 
load of circular foundations on a layer of sand of limited 
thickness by the ANN tool. Momeniet al.[42] used ANN 
and the adaptive neuro-fuzzy inference system (ANFIS) 
tools to predict the bearing capacity of a thin-walled 
foundation, considering the geometric parameters of the 
footing and the geotechnical parameters of soil as input 
parameters of the predicted model. The prediction of the 
bearing capacity of a strip footing in front of a slope was 
treated by Acharyya and Dey [43] using an ANN model 
based on the numerical results provided by the FE code 
Plaxis 2D. Hossein Moayedi and Sajad Hayati [44] studied 
various artificial intelligence–driven tools such as ANN, 
GA–ANN, PSO–ANN, ANFIS, general regression neural 
network (GRNN), and feedforward neural network (FFNN) 
with the objective to model the bearing load of shallow 
footing near a slope. 

Muhammad Nouman Amjad Raja and Sanjay Kumar 
Shukla [45] have conducted studies to estimate the 
settlement of geosynthetic-reinforced soil foundations 
using evolutionary artificial intelligence techniques 
based on the combination of evolutionary algorithms, 
namely, Grey Wolf Optimization (GWO) and ANN. An 
extreme learning machine model has been proposed 
for the prediction of geosynthetic-reinforced sandy soil 
foundations based on a large dataset with actual field 
and laboratory measurements for the validation of this 
model [46]. A hybrid intelligent model has been used  
for the prediction of  load-settlement behavior with 
large-scale geosynthetic-reinforced soil abutments [47]. 
In addition, Khanet al.[48] investigated the viability, 
development, implementation, and comparison of five 
artificial intelligence–based learning machine models to 
estimate the settlement of footing located over a buried 
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conduit within a soil slope. Furthermore, Bardhanet 
al.  [49] presented a comparative analysis of hybrid 
learning machine models by using 10 swarm intelligence 
algorithms to estimate the soil compression index of clay 
based on actual laboratory test data. This problem was 
also treated by Bardhanet al.[50]  with the development 
of  a high-performance learning machine model based on 
the improvement of the Harris hawks optimization (IHHO) 
algorithm. Moreover, several intelligent models have 
been used to estimate the bearing capacity ratio (CBR) 
of the reinforced subgrade soil [51] and [52] . Hasthiet 
al.[53] developed a novel hybrid paradigm based on the 
combination of ANN and dragonfly optimizer (DFO) 
to predict the amplitude of footing resting on geocell-
reinforced soil bed under vibratory load.

This research paper investigates the influence of 
the reinforcement parameters on the ultimate bearing 
capacity of a square footing resting on reinforced sand 
with geosynthetic, using a scale-laboratory model, and 
the optimization of these parameters using multiobjective 
optimization. The design parameters considered in this 
study are the length of the geosynthetic reinforcement (L), 
their number (N),  embedment of the first reinforcement 
layer (U), and vertical spacing between layers (X), The 
responses are the bearing capacity and the cost of 
installing the reinforcement. Calculations will be applied 
for both geogrid and geotextile reinforcement to validate 
this strategy. 

A central composite design of experiments for each 
reinforcement type was first adopted to perform the 
experimental models with different levels of the designed 
variables to reach these objectives. The statistical tool 
analysis of variance (ANOVA) was used to analyze the 
obtained results. The RSM and the ANN techniques were 
adopted to predict the mathematical models relating 
to output responses and input variables. A comparison 
between these regression models was also performed. 
Finally, the optimization of the design parameters is 
achieved by combining the ANN tool and the multiobjective 
GA.

2  Design of experiments 
The design of experiments is an effective tool to reduce 
the operation time. Thus, the design of experiments can 
reduce costs through the design process. A full factorial 
design and ANOVA analysis are generally employed to 
assess the impact of many input factors on the behavior 
of the output results. Within the context of the factorial 
design, several values of input parameters are chosen 

and varied. Each combination is experimentally realized, 
and the output values are recorded [54]. For each input 
parameter, n values are determined; so for the k point, 
a total of  nk combinations are generated and achieved. 
For the case of a small number of input parameters, the 
full factorial design generates a reasonable number of 
combinations. Nevertheless, as their number increases, 
experiments resulting from this design are becoming 
computationally more difficult. 

Therefore, only a portion of the total nk factorial 
design combinations must be considered because higher-
level interactions between the input factors are frequently 
not relevant, emphasizing the significant effect of each 
parameter. It is possible to replace the nk experiments to 
be realized with only n(k-p) combinations, where np is the 
number of realizations deduced from the initial factorial 
design [54].

2.1  Fractional design called Box–Behnken 
design

One of the most prominent techniques for optimization 
using a quadratic regression model is the Box–Behnken 
design [55]. Each variable can take three levels in this 
method, with two of those levels representing the same 
extreme two factorial points in the full factorial design, 
while the mean value of each factor represents its third 
level. The Box–Behnken technique provides efficient 
designs for problems with less than four parameters, and 
the numbers of consecutive runs are comparable.

3  Predictive methods

3.1  RSM approach 

The RSM is a practical tool to determine mathematical 
models linking input parameters and output responses 
[26]. The main idea of the RSM is to approximate the 
output response using an explicit function of the input 
variables. The expression of this approximation is given 
below:

       
𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥) = 𝑎𝑎𝑎𝑎0 + �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 .𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 + �𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗. 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 +�𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖2
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                        (1) (1)

where xi are the input variables ;n the number of input 
parameters; and ai, bi, aibj are coefficients to be determined; 
and g(x) represents the output response.
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Also, b0 is the intercept  of the mathematical model 
and the coefficients b1, b2 …, bk and b12, b13, bk-1 are the 
linear and interaction terms, respectively. g(x) represents 
the output (bearing capacity).

To check the predicted model’s capability and ensure 
that it provides the best approximation for the treated 
problem, the normal probability plot must be almost 
within a straight line. ANOVA is also an efficient tool 
to determine the factors that primarily influence the 
response. In addition, the evaluation of the coefficients of 
determination (R2) and the adjusted R2 also indicates the 
robustness of the predictive model.

3.2  Artificial neural network 

The technique of ANN is a computational tool inspired by 
the neuron performance of the human brain and is able 
to find a mathematical formulation connecting the inputs 
data and the output results of a defined problem [56].

This technique has been used to solve complex 
problems due to its exceptional capacity. It is recommended 
to use these sorts of tools to approximate the response 
functions in evaluating complicated processes. ANN 
can be used in place of polynomial regression models 
to achieve better accuracy and robustness in resolving 
nonlinear fitting models [57, 58].To obtain significant 
results, a user must consider the principal factors: 
network type, network architecture, and network training 
parameters [56, 59]. The network was designed by 
incrementally increasing the number of hidden layers 
and nodes until a suitable architecture could be found. 
According to Meddour et al. [59] and Kalman and Kwasny 
[60], the tangent hyperbolic function is employed in the 
hidden layers of the neural network, in which the use of 
this function speeds up network training compared to the 
sigmoidal function [61]. Big data is reserved for network 
training during the calculation, and the rest is utilized for 
the validation process.  

The back propagation algorithm is used to train the 
network based on the descending gradient rule. This 
algorithm minimizes the mean square error (MSE) by 
introducing the input-output patterns sequentially to 
update weights every time. The minimization is achieved 
by adjusting weights from the output to the input layer 
[59].

To evaluate the fitness and the precision of the ANN 
obtained model, Ramezani and Afsari [62], Rajendra 
et al.[63], and, Garcia-Gimeno et al.[64]suggested four 
indicators, namely coefficient of determination(R2), root 
mean square error (RMSE), mean absolute error (MAE)  

and model predictive error (MPE) and, which are defined 
as follows:

R2 =
∑ �yi,p−yi,e�n
i=1

∑ �yi,p−yaverage�n
i=1

2                                  (2) (2)

RMSE =
�∑ (yi,e−yi,p)2n

i=1

n
                                   (3) (3)

MAE 1
n
∑ �(yi,e − yi,p)�n
i=1                                   (4) (4)

MPE (%) = 100
n
∑ �(yi,e−yi,p)

yi,p
�n

i=1                        (5) (5)

where: n is the number of experiments; yi,e, yi,p are 
the experimental and the predicted values of the ith 
experiment, respectively; and yaverage is the average value 
of experimental results.

The first step to obtain an ANN model is the selection 
of an appropriate architecture network. The objective 
is to construct a predicted ANN model by minimizing 
the model size and errors used during the training and 
validation [65]. In this study and in all cases, the learning 
rate adopted is 0.01. Moreover, to select the optimum 
number of neurons in each hidden layer, proceed by the 
iterations number variation until a high value of R2 with a 
lower value of RMSE parameter is obtained.

4  Experimental model

4.1  Model box 

Experimental tests were conducted in a scale model built in 
the laboratory, constituting of a wooden box whose walls 
were 20 mm thick. The front wall was made of 12 mm-thick 
transparent glass (Figure 1). The internal dimensions of 
the box were 1300 mm × 600 mm in plan and had a depth 
of 650 mm (Figure 2). The box was supported by a metal 
table directly fixed in the lab soil by pins (Figure 1). The 
table was firmly set in a steel frame that supported the 
system loading via a horizontal steel standard beam. The 
latter consisted of a manual hydraulic jack with a capacity 
of 100 kN equipped with a force reading manometer.
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4.2  Model footing

The footing was modeled by square rigid steel with a 
width of 100 mm and a thickness of 15 mm. A thin layer 
of sand was glued with epoxy glue on the footing base to 
ensure a certain roughness during tests. 

4.3  Testing material

Natural siliceous sand was used in this research work, 
with a nominal maximum particle size of 4 mm; it was 
extracted from the Oum Ali deposit located in Tebessa 
province (north-eastern Algeria). The specific gravity and 
fineness modulus of this sand were found to be 2.56 and 
2.36, respectively.

Figure 3 presents the grain-size curve of the used sand. 
According to the United Soil Classification System, this 
sand is classified as poorly graded sand (SP). The values of 
effective sizes (D10), (D30) and (D60) are 0.19, 0.30, and 0.45, 
respectively, while the uniformity coefficient (Cu)=2.368 
and the coefficient of curvature (Cc)=1.053. According to 
the American Society for Testing and Materials (ASTM) 
standard, the minimum and the maximum dry densities 
were found to be ρdmin=1.606 kN/m3 and ρdmax=1.867 kN/m3 
respectively.

4.4  Reinforcement elements

Two types of reinforcement, manufactured by the Algerian 
company Afitex Algeria were used for this study, as shown 
in Figure 4. The first type of geogrid was Afitex RTE 35-35-
40, which was made of high-density polyethylene with 
an aperture size of 40 × 40 mm. The final tensile strength 
was 35 kN/m in the two orthogonal directions. The second 
type of reinforcement was a nonwoven geotextile type 
AS30, with a mass of 300 g/m2, made from polypropylene 
filaments, and its final tensile strength was about 25 
kN/m. The properties of the two reinforcements are listed 
in Table 1.

4.5  Test bed preparation and loading system

A relative density of 35% was adopted for all tests 
corresponding to loose sand, and a dry density of 1.67 kN/
m3 was obtained on using Equation 6.

ρd =
ρd max∗ρd min

ρd max−Dr�ρd max−ρd min�
       (6) (6)

The model box was filled with test material in six 
layers, approximately 100 mm thick for each layer. Light 
compaction was applied to each layer using a tamper to 
obtain the appropriate relative density. The upper surface 

Figure 1. View of the laboratory-scale model. Figure 1: View of the laboratory-scale model.
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Figure 2: Geometric model and studied parameters of the problem.

Figure 3. Grain size curve of the testing material. 
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Figure 3: Grain size curve of the testing material.
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of the sand was leveled, and special attention was given to 
obtain the same dry density for all six layers, and therefore 
a uniform sand bed with a homogeneous unit weight. 

The loading system used in this study is shown 
in Figure 1. It comprises a hydraulic jack with 100 kN 
capacity, and a loading gauge for reading the applied load, 
which is attached directly to the reaction frame provided 
via a horizontal steel beam. The footing settlement was 
measured using two dial gauges located symmetrically at 
the ends of the footing. Loading was applied incrementally, 
and the load increment was restarted after stabilizing the 
settlement. This loading process was repeated until a 
settlement of 35 mm of the plate footing was reached. After 
each test, the test box was imputed and refilled with sand 
material for the following test at suitable reinforcement 
configurations. 

5  Experimental program
In this study, the Box–Behnken experimental design, with 
three levels, and four factors, was utilized to investigate 
the influence of the input variables on the bearing capacity 
of the reinforced footing. The output result, in this case, is 

the bearing capacity of the footing q. In contrast, the four 
input variables are the length of the reinforced layers (L), 
the number of reinforced layers (N), the depth of the first 
reinforced layer (U), and the spacing between the layers 
(X). Their levels according to the footing width B are given 
in Table 2.

According to the Box-Behnken design with four factors, 
and three levels, a total of 25 experimental configurations 
for each reinforcement type as listed in Table 3 will be 
carried out using the scale model presented above.  

6  Results and discussion
Experimental results of 50 tests are presented in terms of 
the bearing capacity of reinforced sand for the two types of 
reinforcement as shown in Table 4. These obtained results 
were evaluated from the stress-settlement curves, in which 
the settlement (s) of the footing is expressed by the non-
dimensional term (s/B), where B is the width footing. The 
ultimate bearing load is defined as the peak of the load-
settlement curve, which marks the collapse of the soil. 
Footing settlement was obtained as the average of two 
gauge readings. The bearing capacity of non-reinforced 

a- Geogrid type AFITEX RTE 35-35-40. b- Geotextile type AS30.

Figure 4: Geosynthetic reinforcements used in this study.

Table 1: Physical and mechanical properties of utilized reinforcement.

Description GeotextileAS30 Geogrid
AFITEX RTE 
35-35-40

- Total weight per unit area (g/m2)
- Thickness (mm)
- Mesh aperture size (mm)
-Peak tensile strength (kN/m)
- Extension at maximum load (%)
- CBR punching strength (kN)

300.0
1.60
-
25.0
75
3.40

135.0
-
40×40
35.0
10
-

Table 2: Levels of the input parameters used in the experimental 
design.

Input  parameters Minimal value Mean value Maximal value

Length (L) 5B 7B 9B

Number (N) 1 2 3

Depth of the first 
layer (U)

0.25B 0.5B 0.75B

Spacing between 
layers (X)

0.5B 0.75B 1.0B
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sand was determined, as equal to 75 kPa. The first 
observations reported from the results in Table 4 show that 
the reinforcement by geotextile improves the foundation’s 
bearing capacity better than the reinforcement by geogrid. 
These can be explained by the contact surface offered 
by the geotextile reinforcement compared to geogrid. 
The influence of the studied parameters on the bearing 
capacity of the footing will be discussed in the following 
sections.

6.1  Effect of reinforcement length

The test results. including the reinforcement length 
variation (L). are presented in Figures 5 and 6 for both 

types of reinforcement. It is worth noticing that the bearing 
capacity increases with increasing reinforcement length 
at an embedment reinforcement depth of 0.25B; also, the 
increase generated with geotextile reinforcement was 
more effective compared to geogrid (Figure 5). However. 
as shown in Figure 6, from the reinforcement length L = 
7.0B. no significant increase in the bearing capacity of 
the footing was noticed.  The lengths 7.0B and 9.0B have 
almost the same ultimate load in comparison to the size 
of 5.0B, and this occurs for both types of reinforcement. 
This finding is consistent with previous studies[66 – 
68]. which concluded that the optimal layer length of 
reinforced sand subjected to axial loads varies between 
6.0B and 8.0B.  Also, Cicek et al. [69], El Sawwaf and Nazir 
[70], and Abu El-Soud and Belal [71] recommended using 
a reinforcement length equal to 7.0B for the case of a strip 
footing reinforced by geogrid to obtain the maximum 
ultimate bearing capacity.   

6.2  Effect of the number of layers

Figures 7 and 8 illustrate the variations of the bearing 
capacity based on the number of reinforcement layers (N) 
for both types of reinforcement. In addition. the number 
of reinforcement varies from one to three layers. It is 
clear from the load-settlement curves that for the case of  
N=3, a significant increase in the bearing capacity was 
observed compared to those with one and two layers. This 
observation is justified for both cases of reinforcement. 
It is interesting to note that the influence of the number 
of layers depends on the depth of the first reinforcement 
and the vertical spacing between them. These conclusions 
were also reported by previous studies of reinforced sand 
supporting strip and square footings and subjected to 
axial loads [72–74].

6.3  Effect of the embedment of the first 
reinforcement layer

The model test results for the influence of  embedment 
of the first reinforcement layer are presented in Figure 9 
for the case of one layer of reinforcement. Figure 10 for 
the case of two layers, and Figure 11 for the case of three 
layers of reinforcement for both geogrid and geotextile 
reinforcement. The depth U was taken with the values of 
0.25B, 0.50B, and 0.75B, with B representing the footing 
width. 

From the obtained results of the different 
configurations, it is apparent that the height values of 

Table 3: Experimental central composite design L25 of the current study.

Run Factor 1
L (*B)

Factor 2
N

Factor 3
U (*B)

Factor 4
X (*B)

1 9 1 0.75 1

2 7 2 0.5 0.75

3 5 1 0.25 1

4 9 2 0,5 0.75

5 9 1 0.25 0.5

6 7 2 0.25 0.75

7 9 1 0.75 0.5

8 9 1 0.25 1

9 7 2 0.5 0.5

10 5 3 0.75 1

11 7 2 0.75 0.75

12 7 1 0.5 0.75

13 9 3 0.25 0.5

14 5 3 0.25 1

15 5 1 0.75 1

16 9 3 0.75 0.5

17 5 3 0.75 0.5

18 9 3 0.25 1

19 5 1 0.75 0.5

20 5 1 0.25 0.5

21 5 2 0.5 0.75

22 7 2 0.5 1

23 9 3 0.75 1

24 7 3 0.5 0.75

25 5 3 0.25 0.5
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Table 4: Experimental results for the two types of reinforcement.

Run Factor 1
L (*B)

Factor 2
N

Factor 3
U (*B)

Factor 4
X (*B)

Response 1
qGeogrid (kPa)

Response 2
qGeotextile(kPa)

1 9 1 0.75 1 170.0 175.0

2 7 2 0.5 0.75 240.0 270.0

3 5 1 0.25 1 220 240

4 9 2 0.5 0.75 275 280

5 9 1 0.25 0.5 260 275

6 7 2 0.25 0.75 280 350

7 9 1 0.75 0.5 170 210

8 9 1 0.25 1 230 275

9 7 2 0.5 0.5 270 300

10 5 3 0.75 1 160 210

11 7 2 0.75 0.75 165 190

12 7 1 0.5 0.75 180 200

13 9 3 0.25 0.5 360 450

14 5 3 0.25 1 350 485

15 5 1 0.75 1 140 165

16 9 3 0.75 0.5 165 180

17 5 3 0.75 0.5 170 165

18 9 3 0.25 1 300 420

19 5 1 0.75 0.5 140 160

20 5 1 0.25 0.5 220 240

21 5 2 0.5 0.75 245 260

22 7 2 0.5 1 200 240

23 9 3 0.75 1 180 185

24 7 3 0.5 0.75 280 370

25 5 3 0.25 0.5 395 525

a) Geogrid b) Geotextile

Figure 5: Effect of length on q – s/B relationship (U=0.25B, N=1, X=0.5B).
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a) Geogrid b) Geotextile

Figure 6. Effect of length on q–s/B relationship (U=0.5B, N=2, X=0.75B). Figure 6: Effect of length on q–s/B relationship (U=0.5B, N=2, X=0.75B).

a) Geogrid b) Geotextile

Figure 7: Effect of reinforcement number on q–s/B relationship (U=0.25B, L=5.0B, X=0.5B).

a) Geogrid b) Geotextile

Figure 8: Effect of reinforcement number on q–s/B relationship (U=0.5B, L=7.0B, X=0.75B).
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the bearing capacity of the footing were acquired at 
an embedment depth of 0.25B. The depth parameter is 
directly influenced by the number of reinforcement layers. 
From Figures 10 and 11, it is worth noticing that the depth 
of 0.75B loses its influence with the increase in the number 
of layers. These results are in good agreement with many 
previous studies dealing with the impact of this parameter 
for the case of a square and circular footing [75–77].

6.4  Effect of the reinforcement layers spacing 

The effect of vertical reinforcement spacing (X) on the 
bearing capacity was investigated for given values 0.5B, 
0.75B, and 1.0B. Figure 12 presents the obtained results 
based on the load-settlement curve for the two types of 

reinforcements. It was noticed that the spacing of 0.5B  
produced the most significant effect.

In addition, the variation of the bearing capacity 
attributed to the spacing layers variation is less significant 
than previously studied parameters (U and N). It is worth 
noting that previous researchers [69, 70, 78] found that the 
optimum value of the vertical spacing between layers is 
close to 0.4B.

6.5  Statistical analysis and RSM modeling

6.5.1  ANOVA results

The ANOVA results for the two types of reinforcement 
used in this study are presented in Tables 5 and 6. with 

a) Geogrid b) Geotextile

Figure 9: Effect of the depth of the first layer on q–s/B relationship (L=5.0B, N=1, X=1.0B).

a) Geogrid b) Geotextile

Figure 10: Effect of the depth of the first layer on q–s/B relationship (L=7.0B, N=2, X=0.75B).
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a significance value of α equal to 0.05 (i.e.. the limited 
confidence interval equals 95%). If the probability 
(P-value) has a low value (≤ 0.05), it can be stated that 
the approximated models can be assumed as statistically 
significant and have an acceptable level of accuracy 
[79]. The ANOVA results for geogrid reinforcement are 
presented in Table 5; the adopted quadratic model is 
considered significantly better, with a computed value of 
R2 of 0.972 and an Adj-R2 of 0.947. These values signify that 
the obtained model can be interpreted as a high correlation 
between input data and output results. From the results 
illustrated above, it is clear that the depth of the first 
geogrid layer (U) is the most significant and influential 
parameter on the response, with a contribution of 63.762%, 
followed by the number of the geogrid reinforcement (N), 
with a contribution of 18.97%. The other two parameters. 

length of geogrid (L) and spacing between layers (X) have 
negligible significance with a contribution of 0.234% and 
1.381%, respectively. The interaction parameter (L×U) also 
significantly contributes to the model, with a percentage 
of 9.485%. However, the rest of the interaction parameters 
and the quadratic terms have shown a negligible effect.

The adopted quadratic model is considered appropriate. 
with a coefficient of determination of  R2 of 0.961 and 
Adj-R2 of 0.928. As shown in Table 6, the depth of the first 
reinforcement layer has the most significant influence 
on the bearing capacity; its contribution is 55.795%. It 
is followed by the number of layers with a percentage 
contribution of 23.439%. The increased influence of the 
interaction term (N×U) with a contribution of 16.082% is 
also observed; however, the impact of the length (L) and the 
spacing between layers (X) seems negligible. 

a) Geogrid b) Geotextile

Figure 11: Effect of the depth of the first layer on q–s/B relationship (L=9.0B, N=3, X=0.5B).

a) Geogrid b) Geotextile

Figure 12: Effect of the spacing reinforcement on q–s/B relationship (U=0.5B, N=2, L=7.0B).



186    Brahim Lafifi, Ammar Rouaiguia, El Alia Soltani

The concluding remarks and conclusions for the 
geogrid reinforcement can be generalized for the second 
type of reinforcement; ANOVA results for geotextile are 
presented in Table 6.

6.5.2  Regression equations

The regression analysis technique is widely applied to 
model the correlation between input factors and output 
results and is suitable for modeling and resolving 
engineering problems. It helps in the determination of 
a reliable approximation for an appropriate correlation 
[80]. It is generally approximated by mathematical 
functions when models are built by performing a set 
of organized experiments using an orthogonal array of 
experiments [81]. Based on the use of Design Expert V10 
software, the relationships between the input parameters 
(length (L), number (N), depth of the first layer (U), and 
spacing between layers (X), and the bearing capacity of 
the footing for the two types of reinforcement are modeled 
by quadratic regression models and are presented below 
equations 7 and 8, with a coefficient of determination R2  
of 97.20% and 96.10%, respectively.

222 *798.291*798.251*441.5

**00.140**00.105**750.13**625.5

*920.329*882.3*875.126*850.69428.268 

XUL

XUUNULNL

XUNLqgeogrid

−−

++−+

−+++−=

  (7) 

(7)

222 *669.393*331.326*473.4

**00.90**00.205**00.15**750.8

*059.671*831.203*083.222*774.72066.55 

XUL

XUUNULNL

XUNLqgeotextile

+−

−+−+

−−+++=

(8) 

(8)

6.5.3  Graphical validation of the models

Figure 13 shows the 3D response surfaces for the evolution 
of the load capacity corresponding to the interaction 
effects of the input parameters (U×L,U×N, and U×X) in the 
designed space, based on the regression equations listed 
above.

Figure 13 a illustrates the evolution of the response 
based on the variation in the depth of the first layer 
(U) and the length of the layers (L) variation. It can be 
observed clearly that the bearing capacity increases with 
decreasing depth (U). However, the variation rate of (L) 
has a slight influence on the response. These observations 
can be applied to the two reinforcements that confirmed 
the results obtained from ANOVA analysis.

The evolution of the response based on the variation 
in the depth of the first layer (U) and the number of layers 
(N) variation is presented in Figure 13 b. As it can be 
seen from the two types of reinforcement, the response 
increases with decreasing depth (U) and increasing the 
number of layers (N).

It is evident that the depth of the first layer (U) rate has 
a significant influence on the response when compared to 
the number of layers (N) rate variation, as long as its slope 

Table 5: ANOVA results of the bearing capacity for geogrid reinforcement. 

Source Sum of squares Df Mean square F value P-value Prob> F Cont (%) Remark

Model 1.156E+005 11 10,512.06 40.30 < 0.0001 Significant

L (length of  layers) 272.22 1 272.22 1.04 0.3256 0.234 Insignificant

N (number of  layers) 22,050.00 1 22,050.00 84.52 < 0.0001 18.970 Significant

U (depth of the first layer) 74,112.50 1 74,112.50 284.10 < 0.0001 63.762 Significant

X (spacing between layers) 1605.56 1 1605.56 6.15 0.0276 1.381 Significant

L*N 2025.00 1 2025.00 7.76 0.0154 1.742 Significant

L*U 756.25 1 756.25 2.90 0.1124 0.651 Insignificant

N*U 11,025.00 1 11,025.00 42.26 < 0.0001 9.485 Significant

U*X 1225.00 1 1225.00 4.70 0.0494 1.054 Significant

L2 1303.60 1 1303.60 5.00 0.0436 1.122 Significant

U2 681.69 1 681.69 2.61 0.1300 0.586 Insignificant

X2 915.48 1 915.48 3.51 0.0837 0.788 Insignificant

Residual 3391.33 13 260.87 0.224 Insignificant

Cor total 1.190E+005 24
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variation is higher than the number of layers (N) slope 
variation. These observations were in good agreement 
with the results obtained from ANOVA analysis, as shown 
in Tables 5 and 6. Consequently, higher rates of response 
are obtained by using smaller values of (U) with higher 
rates of (N).

Figure 13 c shows the 3D response surfaces of the 
response based on the variation in depth (U) and spacing 
between layers (X) variation. It can  be  seen  that for the 
two types of reinforcement, the bearing capacity increases 
with decreasing the two parameters (U) and (X). The slope 
variation of the response according to the depth (U) rate is 
higher than the spacing (X) rate. These remarks agree with 
the results from the ANOVA analysis as mentioned above.

6.6  ANN modeling

6.6.1  ANN modeling of the bearing load of footing with 
geogrid reinforcement

Figure 14 illustrates the adequate ANN architecture of 
the bearing capacity (q) model (4-8-1) for the foundation 
reinforced by geogrid. represented by four input nodes (L, 
N, U, and X) with height nodes in the hidden layer and 
one node for the output layer (bearing capacity). This final 
architecture is obtained after an optimal number of 100 
iterations.

The mathematical model for the above ANN 
architecture is presented by equation 9. This model results 
from the product of hidden layers of the height neurons to 
a linear function.

q=-69.473xH1+215.834xH2+54.268xH3-55.959xH4-
68.668xH5+146.937xH6-2.331xH7+133.836xH8+329.913

(9)

where H1–H8 are the outputs of each neuron of the hidden 
layer and are expressed as follows:

   H1=tanh(0.5x(0.123xL+0.487xN+5.247xU-0.487xX-2.981))
   H2=tanh(0.5x(0.156xL+0.056xN-2.558xU-1.000xX-1.839))
   H3=tanh(0.5x(0.383xL-1.638xN+2.831xU+0.714xX-1.829))
   H4=tanh(0.5x(-0.768xL-1.292xN+9.177xU-4.173xX+5.945))
   H5=tanh(0.5x(0.091xL+3.308xN-5.908xU+7.514xX-11.140))	

(10)

   H6=tanh(0.5x(-0.386xL+1.343xN-3.795xU+1.118xX+0.113))
   H7=tanh(0.5x(1.092xL+0.357xN+2.585xU+5.875xX-14.242))
   H8=tanh(0.5x(-0.173xL+1.579xN+9.080xU-5.964xX+0.047))

Predicted and observed results for training and validation 
cases are presented in Figure 15. 

As shown in Figure 15, it is crucial to note that the 
intersection between experimental and predicted values 
of the bearing capacity (q) is close to the median line for 
both cases. The coefficient of determination R2 is 0.9991 for 
the training case and 1.0 for the validation case; the value 

Table 6: ANOVA results of the bearing capacity for geotextile reinforcement.

Source Sum of squares Df Mean square F value P-value Prob> F Cont (%) Remark

Model 2.601E+005 11 23,641.60 28.90 < 0.0001 Significant

L (length of  layers) 1.39 1 1.39 1.698E-003 0.9678 0.001 Insignificant

N (number of  layers) 61,250.00 1 61,250.00 74.86 < 0.0001 23.439 Significant

U (depth of the first layer) 1.458E+005 1 1.458E+005 178.20 < 0.0001 55.795 Significant

X (spacing between layers) 1422.22 1 1422.22 1.74 0.2101 0.544 Insignificant

L*N 4900.00 1 4900.00 5.99 0.0294 1.875 Significant

L*U 900.00 1 900.00 1.10 0.3134 0.344 Insignificant

N*U 42,025.00 1 42,025.00 51.36 < 0.0001 16.082 Significant

U*X 506.25 1 506.25 0.62 0.4456 0.194 Insignificant

L2 881.50 1 881.50 1.08 0.3182 0.337 Insignificant

U2 1144.99 1 1144.99 1.40 0.2580 0.438 Insignificant

X2 1666.27 1 1666.27 2.04 0.1771 0.638 Insignificant

Residual 10,636.42 13 818.19 0.313 Insignificant

Cor total 2.707E+005 24
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of RMES is 2.0495 and 0.0142 for both cases. respectively. 
These revealed the robustness of the fitted mathematical 
model.

6.6.2  ANN modeling of the bearing load of footing 
reinforced with geotextile

The ANN architecture for the footing reinforced by 
geotextile is illustrated in Figure 16, it consists of four 
input nodes, a hidden layer with eight nodes, and one 

a) 

b)

c)

Figure 13. Effect of geometric parameters on the bearing capacity for the three soils. 
Figure 13: Effect of geometric parameters on the bearing capacity for 
the three soils.

Figure 14: ANN architecture (4 -8 -1) for bearing capacity q.
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Figure 15: Predicted versus experimental values for bearing capacity q.
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output node (4-8-1). This obtained configuration was 
validated after a number of 100 iterations.

The predicted mathematical model for this case is 
presented by equation 11. The model results from the 
product of hidden layers of the height neurons to a linear 
function.

q=99.643xH1+84.155xH2-35.755xH3+25.536xH4+141.912xH5- 
49.333xH6-74.838xH7+135.006xH8+202.524 (11)

where H1–H8 are the outputs of each neuron of the hidden 
layer and are expressed as follows:

    H1=tanh(0.5x(1.218xL+1.489xN-6.070xU+1.038xX-7.934))
    H2=tanh(0.5x(-0.604xL-0.287xN-1.304xU+3.376xX+1.749))
    H3=tanh(0.5x(-0.153xL-0.786xN+3.747xU-7.579xX+5.608))
    H4=tanh(0.5x(+0.301xL-1.828xN-9.566xU-12.053xX+13.420))

(12)

    H5=tanh(0.5x(0.347xL+0.702xN+1.970xU-1.471xX-3.102))
    H6=tanh(0.5x(0.191xL-3.599xN+10.837xU+3.452xX+0.621))
    H7=tanh(0.5x(2.681xL+0.352xN-6.416xU+10.053xX-23.192))
    H8=tanh(0.5x(-0.020xL-1.004xN-7.198xU-0.214xX+8.290))

Figure 17 shows the experimental and predicted results 
for the two cases (training and validation). For both cases, 
it is essential to notice that the observed and the fitted 
values are closest to the straight line.  

The coefficient of determination R2 is 0.9998 for the 
training case and 1.0 for the validation case; the value of 
RMES is 1.038 and 0.0233 for both cases, respectively. These 
also revealed the robustness of the fitted mathematical 
model. 

6.6.3  Sensitivity analysis of the ANN model

To evaluate the influence of each input parameter on 
the bearing capacity model, developed by the ANN, a 
sensitivity analysis was adopted by using the cosine 
amplitude method (CAM). This method has been 
developed to calculate the strength of the relationship 
between two parameters [51]. 
In this method, all the data pairs (each of the input 
parameter and the target parameter) would form an X 
array. with: 

X array. with: Xi = {x1. x2. x3 . … … xm},                    (13) 

        Xi = {xi1. xi2. xi3. … … xim}     (14) 

(13)Figure 16: ANN architecture (4 -8 -1) for the bearing capacity q.

Figure 17: Predicted versus experimental values for the bearing capacity q.
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were each element xi of equation (12) is a vector with 
length m, and it is defined asX array. with: Xi = {x1. x2. x3 . … … xm},                    (13) 

        Xi = {xi1. xi2. xi3. … … xim}     (14) (14)

The correlation strength rij between the input factors xi 
and the target xj can be expressed as follows [51]:

rij =
∑ xikxjkm
k=1

�∑ xik
2m

k=1 ∑ xjk
2m

k=1

  .    0 ≤ rij ≤ 1    (15) 	 (15)

Results of sensitivity analysis for the ANN model for both 
types of reinforcement are presented in Figure 18. In this 
figure, it is worth noticing that all the input parameters 
have a significant contribution in the formulation of the 

model in both cases. The parameter variation range is 
between 33% and 77% for georgid reinforcement. and 
between 26% and 77% for geotextile reinforcement.

6.6.4  Performance strength of the ANN model

For the analysis of the strength performance of the 
obtained ANN model, the performance strength index 
(PS) was used and it can be defined as follows:

PS = (Adj.R2)total+(0.01VAF)total−(RMSE)total
(Adj.R

2

R2
)training+(Adj.R

2

R2
)testing

       (16) (16)

The PS index can provide the strength of performance of 
a predictive model using the values of Adj.R2 and R2 for 
both training and testing datasets along with the values 
adjustement factor (VAF) and RMSE for the total dataset. 
The ideal value of PS is 1 [82]. The VAF is defined by 
equation 17 as shown below:

VAF (%) = �1 −
var((yi.e−yi.p)

var(yi.e) � x100             (17) (17)

By using the expression shown in equation 16, the values 
of PS obtained from the predicted models for both types 
of reinforcement are shown in Figure 19, with a PS index 

of 0.959 for the geogrid reinforcement and 0.964 for 
the other type of reinforcement. The obtained PS index 
revealed the robustness of the fitted ANN models.

Another indicator of the performance of the ANN 
models is called the objective function (OBJ). It determines 
the accuracy of the fitted models in training and testing 
data sets. The lower value of this indicator represents more 
accuracy and vice versa  [51]. This expression is based on 
RMSE, R2, and MAE coefficients and can be estimated as

OBJ = �No.tr−No.ts
No.tr+No.ts

�x RMSEtr+MAEtr
Rtr
2 +1

+ ( 2No.ts
No.tr+No.ts

)x RMSEts+MAEts
Rts
2 +1

             (18) (18)

OBJ = �No.tr−No.ts
No.tr+No.ts

�x RMSEtr+MAEtr
Rtr
2 +1

+ ( 2No.ts
No.tr+No.ts

)x RMSEts+MAEts
Rts
2 +1

             (18) 

where subscripts tr and ts represent training and testing 
data, respectively.

Based on the calculated values of the OBJ function 
(OBJ = 0.642 for the geogrid reinforcement model and OBJ 
= 0.211 for the geotextile reinforcement model), it can be 
concluded that the obtained ANN models have reliable 
accuracy and confirm the previous comparison criteria.
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6.7  Comparison of RSM and ANN models

A comparison between the RSM and ANN methods 
was made to determine the accuracy of the predictive 
models. In this step, some comparisons were required 
to evaluate the difference between experimental results 
and predicted values obtained by RSM and ANN models. 
Terms of comparison for the two predicted models are the 
highest coefficient of determination R2 and low values of 
RMSE and mean prediction error (MPE). The differences 
between experimental and predicted responses using 
RSM and ANN models for both geogrid and geotextile 
reinforcement are presented in Figure 20. It is evident 
from this figure that the experimental and ANN predicted 
values are very close to each other compared to RSM 
predicted values.

Indeed, coefficients R2 obtained by RSM models are 
0.972 for geogrid reinforcement and 0.961for the second 
reinforcement type, and their corresponding values, 
obtained using ANN models are 0.9991 and 0.9998, 
respectively (see Table 7). In addition, the RMSE and MPE 

estimated values based on ANN fitted models are more 
accurate than those of RSM models. The RMSE and MPE 
calculated values are 0.057%  and 0.0414%, respectively, 
for the ANN model and their values for the RSM model 
are 0.3595% and 0.7215%, respectively, for geogrid 
reinforcement. Similar observations and conclusions can 
be made for geotextile reinforcement (Table 7). As a result 
and based on the above statements, the ANN models will 
be adopted for the optimization process later.

6.8  Estimation of the reinforcement cost

To better estimate the cost of reinforcement, costs of 
material and installation are taken into consideration. 
The material cost noted, cost (M), is controlled by the 
number (N) and the length (L) of the layer reinforcement. 
In contrast. the installation cost noted cost (I) would 
depend on the depth of the first reinforcement layer (U) 
and the vertical spacing between layers (X). The total cost 
of the reinforcements is estimated as follows:

a) b)

Figure 20: Comparison between predicted and experimental values for q with RSM and ANN models ( a- geogrid reinforcement. b- geotextile 
reinforcement).

Table 7: Comparison between RSM and ANN models.

Type of 
reinforcement

RSM ANN
R2 RMSE MPE (%) R2 RMSE MPE (%)

Geogrid 0.972 0.3595 0.7215 0.9991 0.057 0.0414

Geotextile 0.961 0.6366 1.027 0.9998 0.0286 0.021



192    Brahim Lafifi, Ammar Rouaiguia, El Alia Soltani

Total Cost=Cost  (M)+Cost (I) (19)

Cost  (M)=LxN.and Cost (I)=U+X*(N-1) (20)

The total cost can be estimated using the equation 

Total Cost=LxN+U+X*(N-1) (21)

6.9  Optimization using multiobjective GA

The multi-objective optimization aims to find a compromise 
between several criteria and compute the values of the 
input parameters that can be brought to the optimal 
values of the response outputs [83]. taking into account 
some requirements simultaneously. Many optimization 
methods are available for solving both constrained and 
unconstrained problems. GAs are the most widely used 
optimization methods. Primarily, creating an arbitrarily 
initial population named chromosomes will be considered 

an initial solution, whose principal performance is 
evaluating the fitness function. Then. according to the 
obtained results, several pairs among these potential 
solutions are generated using evolutionary techniques 
such as selection, crossing, and mutation. The procedure 
of the resolution system may be repeated until the best 
solution is achieved [84] (Figure21).

The present work performs a combination of the 
maximization of the bearing capacity of a shallow footing 
(q) and, at the same time, minimization of the construction 
cost. It was performed with four input variables (L, N, U 
and X). The length (L) varied between 5.0B and 9.0B, the 
number of reinforcement layers between one and three, 
the depth of the first layer between 0.25B and 0.75B 
and the vertical spacing between 0.5B and 1.0B. The 
multiobjective GA tool is used based on the mathematical 
model formulated by the ANN method. The constraints 
used in the present optimization are displayed in Table 8.

Creating a program file containing fitness functions 
was performed using Matlab software. The characteristics 
of the multiobjective GA, such as population. crossover 
distribution index, mutation distribution index. crossover 
probability, and mutation probability, were set using the 
GA toolbox implemented in Matlab software as presented 
in Table 9. 

Table 10 presents the obtained results according to 
GA optimization for the reinforcement parameters and the 
responses for the two types of reinforcement.

7  Conclusions
The present study investigated evaluation of the bearing 
capacity of a square footing resting on sandy soil improved 
by geosynthetic reinforcements on the one hand and the 
optimization of the influenced reinforced parameters 
using a laboratory scale model on the other hand. The 
work considered a multi-objective problem considering 
two conflicting responses: the bearing capacity and cost 
installation of the geosynthetic.  Both the RSM and ANN 
tools and the multiobjective optimization GA were used 
to model and optimize the problem. From this study. the 
following conclusions can be drawn: 

	– A significant increase in the bearing capacity of 
reinforced sand was recorded compared to that 
related to the non-reinforced case.

	– The improvement of the bearing capacity generated 
by geotextile was more significant than that generated 
by geogrid. This can be explained by the importance of 

Figure 21. Diagram of the genetic algorithm. 
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Figure 21: Diagram of the genetic algorithm.
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the contact surface with the soil offered by geotextile 
compared to the geogrid.

	– The increase in bearing capacity become more evident 
as the depth of the first layer reinforcement decreased. 
This conclusion was confirmed by the ANOVA for 
the two types of reinforcement. It indicated that the 
depth (U) had the most significant influence on the 
predicted models. 

	– The optimum value for the depth of the first 
reinforcement layer (U) was estimated to be 0.25B, 
and the length of reinforcement layers (L) was found 
to be  7.0B (with B as the footing width). The bearing 
capacity reaches its maximum value for a number 
of reinforcement layers (N) equal to three, and the 
optimum vertical spacing between layers (X) was 
found to be 0.5B. 

	– The above experimental findings were confirmed 
using the proposed method based on multi-objective 
optimization.

	– The ANN method provided more accuracy for 
predicted models than the RSM method.

	– The coupling of the ANN method and the multiobjective 
optimization GA was found to be a very efficient tool 
for predicting the conflicting multiobjective problems. 

Finally, it is worth noticing that the obtained results of 
this study are specific to a square footing with a 10 cm 
width and for loose sand with a relative density of 35%. 
The effect of other parameters. such as the density of used 
sand. footing dimensions and types, scale effect, and 
other, has not been considered in this work.
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