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Abstract: Ground movements induced by deep excavations 
may cause damages on neighboring existing buildings. 
Finite element simulations generally give acceptable 
estimates of the horizontal displacements of the retaining 
wall, but results are less satisfactory for the vertical 
displacements of the ground surface behind the structure. 
A possible explanation is that most constitutive models 
describe volumetric strains in a simplified way. This 
paper proposes an elastoplastic constitutive model aimed 
at improving the prediction of vertical displacements 
behind retaining walls. The model comprises a single 
plastic mechanism with isotropic strain hardening, but 
has a specific flow rule that allows to generate contractive 
plastic strains. Identification of the parameters based on 
triaxial tests is explained and illustrated by an example 
of calibration. A numerical analysis of a well-documented 
sheet pile wall in sand in Hochstetten (Germany) is 
presented. The results given by the model are compared 
with the measurements and with those obtained using the 
Hardening Soil Model. The potential advantages of the 
proposed model are then discussed.

Keywords: deep excavations, settlements, constitutive 
model, finite element method, elastoplastic model.

1  Introduction 
The densification of urban areas implies the construction 
of deep excavations nearby sensitive constructions, for 
lack of available space at the surface. Most analyses are 
focused on wall displacements (Zhang et al., 2015a, Goh 

et al., 2017a), but the prediction of the displacements 
induced in the surrounding ground is a major challenge 
to avoid damages on existing buildings. Few calculation 
methods are able to assess not only the displacements of 
the retaining structure, but also the vertical displacements 
of the supported ground: the finite element method (FEM) 
makes it possible to evaluate such settlements, while 
taking into account a wide range of configurations and 
construction techniques.

However, FEM simulation results are not always 
consistent with observations: the removal of the weight 
of the excavated ground induces a heave of the bottom 
of the excavation and may lead to poor prediction of the 
settlement of the ground behind the retaining structure 
(Schweiger, 2002a, Coquillay et al., 2005, Elmi et al., 2006, 
Zhang et al., 2018). In terms of finite element simulations, 
constitutive models combining a linear elastic model and 
a shear strength failure criterion tend to predict ground 
heave behind the retaining structure instead of settlement 
(Jardine et al., 1986; Finno and Harahap, 1991; Simpson, 
1992; Finno, 2008) and to overestimate the extent of the 
influence zone (Delattre, 2004). These two issues are 
fundamental in terms of design. In practice, designers 
take into account the limits of linear elasticity by assuming 
that the deformations are within a given range and then 
adjust deformation moduli to obtain acceptable horizontal 
displacements. Using nonlinear elastic models (Duncan 
and Chang, 1970; Jardine et al., 1986; Zdravkovic et al., 
2005) gives very good results regarding the prediction 
of horizontal displacements of the retaining structures 
and improves the prediction of settlements behind the 
retaining structure. However, results for settlements can 
still be improved. Besides, the behavior of geomaterials is 
not only nonlinear, but also irreversible. It can be argued 
that, around deep excavations, plastic strains become 
prominent and must be precisely modeled to predict the 
settlements generated behind the retaining wall. 

The choice of the yield function, the flow rule, 
and the hardening rule is, therefore, essential. A 
popular constitutive model for excavation problems 
is the “Hardening Soil Model” (Schanz et al., 1999) 
and its extension HSM-small strain (Benz, 2007). It is 
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an elastoplastic model with a nonlinear elasticity and 
two plastic strain-hardening mechanisms: a deviatoric 
mechanism and a volumetric mechanism. It was first 
implemented in Plaxis (Plaxis, 2020), and other FE 
software reproduce it at least partially (for instance, Zsoil 
[Obrzud and Truty, 2018] or CESAR-LCPC [Itech, 2021]). 
This model has significantly improved the assessment of 
ground displacements induced by excavations (Obrzud, 
2010; Obrzud and Truty, 2018), but its formulation is 
complex, so it is not easy to anticipate the influence of 
some of the parameters on the results of the simulation of 
an excavation. 

In this paper, an elastoplastic constitutive model 
called “the Hardening Contractive Dilatant model,” or, 
in short, the HCD model is proposed. It aims to be easily 
used by engineers. First, the formulation is presented 
and a methodology is proposed for the determination 
of parameters. An application of the HCD model to the 
simulation of the construction of an experimental sheet 
pile wall in Germany is then presented.

2  Formulation of the HCD model
The HCD model is derived from a model developed for 
sands under monotonic and then under cyclic loading, 
called MODSOL (Chehade, 1991; Khoshnoudian, 2002; 
Khoshravan Azar, 1995; Shahrour and Ousta, 1998; 
Shahrour et al., 1995a; Zaher, 1995). 

2.1  Elastic part of the model

The proposed approach is based on the idea that the plastic 
part of the strain plays a major role in the behavior of deep 
excavations, so that the elastic part of the model does 
not need to be described in detail. Only two parameters, 
Young’s modulus and Poisson’s ratio, are required. Thus, 
the formulation of the elastic part of the HCD model is 
not as flexible or versatile as that of the Hardening Soil 
Model or the HS-small model, but it is much simpler (it 
is worth recalling that the elastic part of these models 
requires five and six parameters, respectively, in addition 
to the strength parameters c and φ). In other words, we 
advocate the idea that, for deep excavations, the elastic 
part of the constitutive model can be kept simple; it may 
not be appropriate for other types of structures, such as 
shallow foundations or tunnels. 

Note that the finite element code CESAR, in which the 
HCD model is programmed, makes it possible to combine 
the plastic part of the HCD model with a wide range of 

elastic models: linear models with moduli varying with 
depth, nonlinear models (the nonlinear elasticity of the 
modified Cam-Cay model, of HSM, or the Fahey–Carter 
model, etc.). 

2.2  Plastic regime

Regarding the plastic regime, the model aims at 
reproducing the main phases defined by Fern and Soga 
(2018) as shear strain develops: initial contractive 
hardening phase, phase transition point (Tatsuoka et al., 
1986), dilatant hardening phase, then evolution toward 
a regime where the volumetric plastic strain remains 
constant.

2.2.1  Yield function 

The yield function is a function of the principal stresses 
and accounts for the influence of the Lode angle:

𝑓𝑓𝑓𝑓(𝑝𝑝𝑝𝑝, 𝑞𝑞𝑞𝑞, 𝜃𝜃𝜃𝜃) = 𝑞𝑞𝑞𝑞 − 𝑅𝑅𝑅𝑅(𝜃𝜃𝜃𝜃)(𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐) (1) (1)

where p denotes the mean effective stress, q the deviatoric 
stress, and θ the Lode angle: 
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It follows from equation (1) that the yield surface is a 
cone in the principal stress state (with a noncircular 
trace in the deviatoric plane, because R(θ) depends 
on the the Lode angle, see Figures 1 and 2). In equation 
(1), care must be taken that the chosen yield surface is 
very simple: as a consequence, pc, which represents the 
distance from the apex of the yield surface to the origin of 
the effective principal stress space, should be interpreted 
as a parameter describing (together with R(θ)) the shear 
strength, rather than the material tensile strength. 
Besides, pc remains constant; by contrast, R(θ) is the local 
strain-hardening variable and varies as plastic strains 
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evolve. Its initial value Ro(θ) defines the initial opening 
and shape of the elastic domain and is a function of the 
initial friction angle φo and the Lode angle θ according to 
the equation

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜(𝜃𝜃𝜃𝜃) =
6 sin 𝜑𝜑𝜑𝜑0

3 − sin 𝜑𝜑𝜑𝜑𝑜𝑜𝑜𝑜 sin 3𝜃𝜃𝜃𝜃
 (6) (6)

2.2.2  Hardening rule and failure surface – ultimate 
friction angle

As plastic strains develop, the hardening variable R(θ) 
evolves according to the equation
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where φult and b are material parameters. The Lode angle 
θ in equations (6)–(8) allows to distinguish compression 
stress paths (sin 3θ=1) and extension stress paths (sin 
3θ=-1).

In equation (7), we use the plastic deviatoric strain εp
d 

defined as (Shao and Desai, 2000):

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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Because εp
d can only increase, according to (9), the model 

excludes any softening behavior. 
For large values of εp

d, the yield function tends to 
become

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑞𝑞𝑞𝑞 − 𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓(𝜃𝜃𝜃𝜃)( 𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐) (10 (10)

φult is the ultimate friction angle, whereas parameter b 
describes the rate of strain hardening: for εp

d=b, R takes 
the value (Ro+Rf)/2 at the center of the interval between its 
initial value Ro and its asymptotic value Rf. 

2.2.3  Flow rule – characteristic friction angle

The originality of the proposed formulation lies in the 
fact that the flow rule is not defined by a plastic potential. 
Instead, the plastic strain increment is split into a 
deviatoric part 𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑑𝑑𝑑𝑑

𝑝𝑝𝑝𝑝���   and a volumetric part 𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑣𝑣𝑣𝑣𝑝𝑝𝑝𝑝���: 
     

 𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝��� = 𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑣𝑣𝑣𝑣
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where dλ is the plastic multiplier and the two functions 
Gv and Gd define the direction of the volumetric and 
deviatoric strain increments, respectively:
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where the parameter Mc(θ) depends on the Lode angle 
according to the equation

𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐(𝜃𝜃𝜃𝜃)   =
6 sin𝜑𝜑𝜑𝜑𝑐𝑐𝑐𝑐

3 − sin𝜑𝜑𝜑𝜑𝑐𝑐𝑐𝑐 sin3𝜃𝜃𝜃𝜃
(14)

(14)

which introduces an additional material parameter noted 
φc and called “characteristic angle.”

Three cases can be distinguished:
-	 If q<Mc(θ)(p+pc), the behavior is contractive;
-	 If q=Mc(θ)(p+pc), the soil reaches the characteristic 

state, which corresponds to the phase transition point 
from a contractive to a dilatant behavior; and

-	 If q>Mc(θ)(p+pc), the behavior is dilatant.

The proposed flow rule makes it possible to better 
represent the volumetric strains at the onset of the plastic 
regime because contractive plastic strain compensates for 
the dilatant volumetric elastic strains. 

The transition between contractive and dilative 
regimes for the volumetric strain is similar to Rowe’s Stress 
dilatancy equation (Rowe, 1962), which can be adapted 
to express the mobilized dilatancy angle as (Schanz and 
Vermeer, 1996):

𝑠𝑠𝑠 � =
𝑠𝑠𝑠 � − 𝑠𝑠𝑠 �𝑐𝑐
1 − 𝑠𝑠𝑠 � 𝑠𝑠𝑠 �𝑐𝑐

(15)

But in the formulation of the HCD model, the plastic 
strain is not described by a plastic potential and a 
dilatancy angle: instead, equations (12) and (13) describe 
independently the deviatoric and the volumetric part of 
the plastic strain increment. Equation (12) shows that, 
for large deviatoric plastic strains, the volumetric plastic 
strain increment tends toward zero. Besides, the parameter 
αo makes it possible to control the rate at which plastic 
volumetric strain rate tends toward zero as the deviatoric 
plastic strain εp

d increases. Note that the volumetric plastic 
strain increment is not related to a critical state defined by 
the stress ratio, for instance, in contrast to the approach 
proposed by Roscoe et al. (1958) or Schofield and Worth 
(1968).
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2.3  Example of calibration of the HCD model 
on triaxial tests

A clear methodology for the determination of the model 
parameters based on data available for a real project is 
a crucial issue in practice. The formulation of the HCD 
model includes eight parameters:
-	 the elastic parameters: Young’s modulus E and 

Poisson’s ratio ;
-	 the initial friction angle φo, the apex parameter pc and 

the ultimate friction angle φult; and
-	 the characteristic angle φo and the hardening 

parameters αo and b.

In this paragraph, the calibration of the model parameters 
is discussed using triaxial tests carried out for a metro 
station of line 15 south of the “Grand Paris Express” 
project. The data were provided by Soletanche-Bachy (a 
French deep foundations contractor). Tests with different 
confining stresses have been performed on samples from 
three layers (Table 1). 

In a first step, the apex parameter pc and the ultimate 
friction angle φult  can be deduced from the stresses at 
failure in the drained triaxial tests. 

As a first approximation, it is assumed that the elastic 
limit corresponds to an axial strain of 0.1%, which makes 
it possible to calculate Young’s modulus E and Poisson’s 
ratio . Denoting the mean effective stress and the 
deviatoric stress for this value of the axial strain as p0 and 
q0, parameter Ro is obtained from the equation (1):

𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜 =
𝑞𝑞𝑞𝑞𝑜𝑜𝑜𝑜

𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜 + 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐
  (16) (16)

Angle φo can then be estimated using equation (6) with 
3θ=1:

𝜑𝜑𝜑𝜑𝑜𝑜𝑜𝑜 = Arcsin
3𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜

6 + 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜
  (17) 

(17)

The characteristic angle φc corresponds to the transition 
between the contractive and the dilatant behavior and 
its value can be determined by adjusting the axial strain 
εa–volumetric strain εv curve. The value of parameter b is 
determined by fitting the simulations on the axial strain 
εa–deviatoric stress q curve.

Eventually, the value of parameter αo is obtained by 
fitting the end of the simulated axial strain–volumetric 
strain curve on the results of the drained triaxial tests. 

Table 2 summarizes the parameters obtained for 
each test. Numerical results are shown in Figures 3–5 and 
compared with test results. Note that, for tests E1, E2 and 
E3, the measured deviatoric stress presents a peak value 
and then a progressive decrease: as explained before, such 
a behavior cannot be reproduced using the HCD model. 

σ1

σ2

σ3
-pc

f (σij,k)=0

Figure 1: Yield surface in the principal stress space.

σ3
σ2

σ1

Figure 2: Section of the yield surface in the deviatoric plane.

Table 1: Summary of the triaxial tests considered in this study.

Test Depth Type of soil Type of test

B 6.5–7 Very fine silty sand Consolidated drained CD

C 8.5–9.5 Slightly sandy 
pebbles and gravel

Consolidated drained CD

E 13.7–14 Silty clay Consolidated drained CD
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Besides, the results presented in Table 2 show the 
fitting of the parameters for each test: this leads to 
different values of Young’s modulus for the different 
confining pressures. To overcome this difficulty, one can 
choose an average value or use a modulus value varying 
with the depth. This is the choice adopted in Section 3.

Two additional drained triaxial tests are performed 
on an alluvial soil: a monotonic test and a test with two 
loading–unloading cycles. In the latter case, the shear 
stress increases until the axial strain reaches 0.5%, then 
it returns to zero, then it increases up to 1.5% axial strain; 
a second unloading occurs followed by a final loading up 
to 15% axial strain. 

Table 2: Parameters of the HCD model for tests B, C, and E (σc denotes the confining pressure).

σc E v φo pc φult αo φc b

kPa MPa -  ͦ kPa  ͦ -  ͦ -

Test B
1 150 45 0.2 7 10 35 1 31 0.005

2 250 70 0.2 7 10 35 1 32 0.008

3 400 107 0.2 7 10 35 1 33 0.009

Test C 2 200 133 0.1 15 15 41 1 38 0.002

3 350 233 0.127 15 15 41 1 39 0.005

Test E
1 200 16 0.12 1.2 60 23 1 20 0.004

2 350 45 0.12 2.2 60 23 1 20 0.005

3 550 112 0.14 4.2 60 23 1 21 0.015

  

Figure 3: Calibration of the HCD model on tests B1, B2, and B3.

  

Figure 4: Calibration of the HCD model on tests C2 and C3.
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The slope of the axial strain–deviatoric stress curves at 
the beginning of the monotonic test and on the unloading 
cycles is chosen to define the value of Young’s modulus 
E. Poisson’s ratio  is determined using the slopes of the 
volumetric strain–axial strain curves at the beginning of 
the monotonic test and on the unloading cycles. Ultimate 
shear strength parameters are determined in the p-q plane 
for the highest levels of strain. Parameter φo is determined 
by assuming that the initial stress state of the triaxial 
test is on the boundary of the elastic domain. Parameters 
of the flow rule αo and φc are obtained by fitting the 
volumetric strain–axial strain curve on the experimental 
results. Parameter b, which governs the strain-hardening 
mechanism, is fitted to reproduce the deviatoric stress–
axial strain curves.

Table 3 and Figures 6 and 7 show the results of the 
calibration. 

This example of calibration shows that the HCD model 
has the ability (or the flexibility) to reproduce accurately 
the results of triaxial tests and proposes to determine the 
values of the parameters in a given order. It remains to 
discuss the ability of the model to reproduce the behavior 
of a full-scale structure. 

3  Case history: Hochstetten sheet 
pile wall
This section presents a numerical analysis of an 
experiment carried out in Hochstetten, Germany, by the 

  

Figure 5: Calibration of the HCD model on tests E1, E2, and E3.

Table 3: HCD model parameters.

E v φo pc φult αo φc b

MPa ͦ kPa deg deg

Monotonic test (confining pressure 175 kPa) 57 0.4 φmin 0 37 8 27 0.001

Cyclic test  (confining pressure 157 kPa) 57 0.4 φmin 0 37 20 31 0.003

   

Figure 6: Calibration of the HCD model on the monotonic drained triaxial test on alluvial material.
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University of Karlsruhe (von Wolfferdorff 1994a, 1994b). A 
sheet pile wall was monitored during several construction 
and loading stages. The experiment was the basis for a 
prediction exercise: 18 contributions were submitted using 
finite element models and 23 using the subgrade reaction 
coefficient method. Shahrour et al. (1995b) and Coquillay 
(2005) noted that the overall behavior and the horizontal 
displacements obtained by numerical simulations were 
reasonably close to the measures, but reproducing the 
settlements behind the wall remained a challenge. 

In the following sections, we present finite element 
calculations for this sheet pile wall performed using the 
finite element software CESAR-LCPC in which the HCD 
model has been implemented.

3.1  Description of the experiment

The Hochstetten sheet pile wall was made of sheet piles 
vibrodriven down to a depth of 6 m in a sandy ground 
(see Figure 8). The water table was located 5.5 m below 
the natural ground level. The experiment includes the 
following stages:
0)	 Installation of the sheet piles
1)	 Excavation down to a depth of 1.75 m
2)	 Installation of three struts at a depth of 1.25 m with a 

spacing of 2.4 m and a prestressing force of 10 kN per 
strut

3)	 4) 5) Excavations down to 3, 4, 5 m
6)	 Application of a 10 kPa pressure at the ground surface 

between 1 and 5 m from the wall (by means of a basin 
filled with water)

After the application of the surface load, the struts were 
progressively shortened. This phase is not taken into 
account hereafter. 

The monitoring devices measured bending moments 
in the wall, forces in the struts, horizontal displacements 
of the wall, vertical displacements of the ground surface 
behind the wall, and earth pressure on both sides of the 
wall. Results of the experiment have been made public by 
von Wolffersdorff (1994b) and reproduced by Shahrour et 
al. (1995) and Coquillay (2005).

Case studies of monitored full-scale structures are 
always extremely valuable for the validation of numerical 
simulations, but this experiment is especially interesting 
because the structure, the hydraulic regime, and the 
lithology of the site are simple. Notably, the fact that 
the sand is relatively homogeneous avoids the addition 
of uncertainties attached to the determination of the 
parameters for several layers. Moreover, the experiment 
was carried out in well-controlled conditions, which limits 
uncertainties that are frequent in actual construction 
sites, such as undocumented transient phases (temporary 
storage of excavated material, for instance). Besides, 
the monitoring devices provide rich information, unlike 
many references in the literature for which it is difficult to 
precisely reconstruct both the settlement measurements 
behind the retaining structures and the geotechnical 
context.

3.2  Geometry, mesh, and modeling 
assumptions

The main assumptions are the following: 
-	 The wall is modeled in plane strain conditions. The 

excavation is 4 m wide and not symmetric: the struts 
are connected to another stiffer wall. The lateral 
extension of the calculation model is equal to 50 m 
and the vertical extension is equal to 15 m; the mesh, 
shown in Figure 9, comprises 1200 quadratic elements 
and 3700 nodes. 

  

Figure 7: Calibration of the HCD model on the drained triaxial test with unloading cycles on alluvial material.
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-	 The walls are modeled using surface elements (as 
opposed to beam elements) and the row of struts 
is modeled using a simple “bar” element acting as 
a horizontal spring; in other words, the bending 
stiffness of the struts is neglected. 

-	 The installation stage is not modeled; the so-called 
“wished-in-place” method is used. 

-	 Interface elements are introduced between the wall 
and the ground. 

-	 The analysis is carried out in drained condition.
The calculation comprises a sequence of six stages that 

match the description of the experiment given in 
Section 3.1. 

3.3  Boundary conditions

The horizontal and vertical displacements are set to 
zero on the mesh lower boundary, and the horizontal 
displacement is zero on the left and right boundaries.

3.4  Initial stresses

The initial stresses are geostatic:

��' =  � ; �ℎ' = ��  � (18)

Figure 8: Experimental setup (a) front view, (b) top view.

Figure 9: Mesh used for the simulations.
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where the earth pressure coefficient Ko is chosen equal 
to 0.318 (which corresponds to Ko=1-sinφ with a friction 
angle φ of 43°, see Section 3.7) the value of the (dry) sand 
volumetric weight is taken equal to 17 kN/m3.

3.5  Properties of the walls and struts

The axial stiffness EA and the flexural stiffness EI (per unit 
length of wall) are known for the experimental sheet pile 
wall and for the reaction wall. Following Coquillay (2005), 
in the plane strain simulations, an “equivalent” thickness 
teq and an equivalent Young’s modulus Eeq are used, so that 
the following conditions are fulfilled: 𝜎𝜎𝜎𝜎𝑣𝑣𝑣𝑣′ =  � 𝑧𝑧𝑧𝑧 ;  𝜎𝜎𝜎𝜎ℎ′ = 𝐾𝐾𝐾𝐾𝑜𝑜𝑜𝑜 � 𝑧𝑧𝑧𝑧   (18) 

 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ; 𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒3 /12 =  𝐸𝐸𝐸𝐸𝐼𝐼𝐼𝐼   

The parameters are summarized in Table 4 (thicknesses 
being rounded to whole numbers in cm).

The row of struts is modeled by a two-node linear 
element withstanding only tension/compression forces, 
with a linear elastic behavior; the elastic parameters 
are deduced from the axial stiffness of the struts and 
the spacing. In the simulations presented hereafter, we 
adopt the values reported in Coquillay (2005): E = 210,000 
MPa and A = 0.02 m2/m. At the installation (stage 2), 
a prestressing force of 4.2 kN/m is taken into account, 
corresponding to the force in each strut (10 kN) divided by 
the spacing between struts (2.4 m).

3.6  Interface model and parameters

For the simulations with both models (HSM and HCD), the 
interface between the walls and the sand is modeled by 
zero-thickness elements called “joint elements,” based 
on the approach proposed by Goodman et al. (1968), 
characterized by their cohesion cint and friction angle φint. 
It is often suggested that these parameters can be deduced 
from the cohesion and friction angle csand and φsand of the 
sand by cint = Rinter tan csand and tan φint = Rinter tan φsand, 
where Rinter is a coefficient that remains to be discussed. 
By contrast, in the following, the interface strength 
properties are set independently from those of the sand. 

Since no specific data was available, after preliminary 
parametric studies, the following values are selected: 

cint = 1 kPa and φint = 5°

A short discussion regarding the influence of this choice is 
presented in Section 4.

3.7  Sand parameters 

The files of the prediction exercise contained the results 
of triaxial tests carried out on the sand of the site. The 
results of three monotonic drained tests are reproduced in 
Coquillay (2005), under the names S5DK15, S5DK21, and 
S5DK31 for confining pressures of 100, 200, and 300 kPa, 
respectively. 

We have performed a calibration of the parameters 
of two models: the Hardening Soil Model (Schanz et 
al., 1999), because it is very widely used by engineering 
companies or firms and has become a standard, and the 
HCD model. 

The calibration aimed at reproducing as much 
as possible the three tests considered with the same 
parameters. The calibration led to the parameters given in 
Table 5. The result of the calibration is illustrated in Figure 
10 for the Hardening Soil Model and in Figure 11 for the 
HCD model.

For the HSM parameters, we have adopted the choices 
commonly adopted in engineering practice: Poisson’s 
ratio equal to 0.1; reference stress equal to 100 kPa; 
Eur=3E50, Rf=0.9. It can be kept in mind for the following 
discussion that, with the proposed parameters, the 
simulation slightly overestimates the stiffness for the 
test with 100 kPa confining pressure; but, in a general 
way, both models reproduce the test results reasonably 
well, with the volumetric strain being relatively less well 
approximated.

Table 4: Parameters of the reaction wall and the sheet pile wall.

Wall E (MPa) I (cm4/m) A (cm2/m) Eeq (MPa) teq (cm)

Reaction wall 210,000 968 106 24,400 10

Sheet pile wall 210,000 11,610 116 6800 35
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3.8  Results 

3.8.1  Results obtained with HSM

Table 6 shows the values of the maximum horizontal 
displacement of the sheet pile wall for the last three stages 
of the simulation: excavation down to 4 m, then 5 m, and 
application of a 10 kPa surcharge behind the wall, and of 
the settlement of the ground at 1 m behind the wall for the 
last two stages.

With the values of the reference parameters resulting 
from the calibration, the horizontal displacement of the 
wall is significantly overestimated for the last two stages, 
and the settlement behind the wall is also overestimated 

(Table 6 shows the values of the computed displacements 
in mm and the relative error with the measured values), 
in spite of the fact that the calibration of the parameters 
tended to overestimate the sand initial stiffness, as 
mentioned in Section 3.7.

With the initial estimate of the maximum horizontal 
displacement and of the maximum settlement in the 
final state being much too large, increasing the sand 
stiffness is a straightforward way to improve the results, 
without modification of other parameters. No systematic 
calibration procedure has been used for the model 
parameters, such as the ones proposed by Zhang et al. 
(2015b) or Moussaoui et al. (2022). The difference between 
simulations and measurements is simply reduced by 
increasing the values of the elastic moduli. The values 
Eur

ref=135 MPa and E50
ref=45 MPa are selected (instead of 63 

MPa and 21 MPa, respectively; with no modification of the 
ratio Eur

ref/E50
ref). Table 6 shows that the adjusted moduli 

improve the estimated maximal horizontal displacement 
of the sheet pile wall at the final stage (relative error of 
4%) and the settlement 1 m behind the wall at the same 
stage (relative error of 17%), but, of course, the simulation 
of the triaxial tests gives results that are less close to the 
laboratory data. 

3.8.2  Results obtained with the HCD model

Table 7 shows the same comparisons for the HCD model. 
Again, we present the results with the parameters obtained 
by the calibration presented in Section 3.7. The results are 
clearly closer to the measures than those obtained with 
HSM for the reference parameters.

We have also adjusted the model parameters to reduce 
the difference with the measured values. The proposed 
adjustment consists in letting Young’s modulus vary with 
the depth z according to (z)=27+5z, where E is in MPa and 
z is in m. With this adjustment, the model reproduces 
reasonably well the experimental results.

3.8.3  Comparisons HSM/HCD

This section presents a more direct comparison of the 
results obtained with the two models and the experimental 
values. Results shown below correspond to the adjusted 
parameters of both models.

Figure 12 compares the horizontal displacements of 
the wall: the simulations with the HCD model give values 
of the maximum displacement and of the toe displacement 
closer to the measures than the simulations with HSM. On 

Table 5:  Reference parameters (calibrated on the triaxial tests) for 
the Hochstetten sand.

HSM Eur
ref=63 MPa,E50

ref=21 MPa, =0.1,m=0.5, pref=100 kPa,
c=5 kPa,  =43,  =14, Rf=0.9

HCD 
model

E=75 MPa, =0.3, Ro=0,
pc=2 kPa, φult=43, φc=29, αo=3, b=0.0025

  

 
Figure 10: Results of the calibration of the Hardening Soil Model 
parameters.
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the other hand, the horizontal displacement in the upper 
part of the wall is better reproduced using HSM.

Figure 13 compares the vertical displacements of the 
ground surface behind the wall for distances between 1 
and 5 m: both models give similar results and close to the 
measured values. It can be estimated that the HCD model 
gives values rather closer to the measurements for the 
excavation down to 5 m.

The results of the experiment also presented the 
bending moments in the sheet pile wall. The comparison 
between models and measures is not shown here for 
brevity, but confirms a strong consistency between models 
and experiment. 

In the last place, we can compare the values of the 
forces in the struts for the different stages of the experiment 
(Figure 14). Both models give very similar results and tend 
to overestimate the normal forces in the struts for the last 
two stages.

 
Figure 11: Results of the calibration of the HCD model parameters.

Table 6: Results obtained with HSM (displacements in mm).

Measures HSM (ref.) HSM (adj.)

Max horizontal 
displacement – 4 m

1.83 1.34 (-27%) 0.91 (-50%)

Max horizontal 
displacement – 5 m

2.95 4.49 (+52%) 2.56 (-13%)

Max horizontal 
displacement –surcharge

3.36 5.80 (+73%) 3.28 (-2%)

Settlement 1 m behind 
the wall – 5 m

2.17 1.21 (-44%) 0.80 (-63%)

Settlement 1 m behind 
the wall – surcharge

2.80 4.18 (+49%) 2.26 (-19%)

Figure 12: Comparison of the horizontal displacements (last three 
stages).
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4  Discussion
Several factors may be responsible for the differences 
observed in the horizontal displacement of the upper part 
of the wall, which are as follows:
-	 The sheet piles were vibrodriven; for that type of 

installation, one can question the assumption that 
the stress state in the sand remains geostatic.

-	 Regarding the calibration on the triaxial tests, the 
determination of the cohesion c for the HSM model 
and of pc for the HCD model is not very precise, 
which is an issue because a sensitivity analysis (not 
presented here) shows that their influence on the 
results is not negligible.

-	 The parameters of the sand–sheet pile wall interface 
have not been discussed in detail, yet they can also 
have a strong influence on the wall behavior. To 
illustrate this point, we have rerun the simulations 
with φint = 20° instead of 5° (the value of 20° is found 
in the analyses of the same sheet pile wall presented 
by Mestat and Arafati (1998), Coquillay et al. (2005), 
and Elmi et al. (2006), focusing on the horizontal 
displacements and giving poor results in terms of 
vertical displacements behind the wall). For both 
the HSM and HCD models, the maximum horizontal 
displacement is reduced by approximately 10% for 
all stages. The forces in the struts are reduced, very 
similar for both models, and slightly underestimated 
at the initial stages and close to the measurements at 
the surcharge step. Vertical displacements behind the 
wall are presented in Figure 15. The agreement with 
the measured settlements is less satisfactory: notably, 
for the excavation down to 5 m, the maximum 
settlement is 0.5 mm for the HSM model and 1 mm for 
the HCD model, while the measures give 2.2 mm. This 
led us to retain the value of 5° in Section 3. 

Nevertheless, from a qualitative point of view, the 
HCD model gives good results for the simulation of the 
Hochstetten pile wall and, for the special case discussed 
here, gives better results with the parameters resulting 
directly from the calibration on triaxial tests as HSM. HSM 
performs very well too, but it was necessary to adjust the 
parameters derived from the calibration on the triaxial 
tests. It must also be kept in mind that the absolute 
displacements measured on the sheet pile wall were small, 
so a small deviation between the computed and measured 
values results in apparently large relative errors.

In the last place, it can be mentioned that the HCD 
model has also been used to perform simulations for a 
30-m deep excavation in Berlin sand, with horizontal 

Table 7: Results obtained with the HCD model (displacements in 
mm).

Measures HCD (ref.) HCD (adj.)

Max. horizontal 
displacement – 4 m

1.83 0.86 (-53%) 1.37 (-25%)

Max. horizontal 
displacement – 5 m

2.95 2.53 (-14%) 2.99 (+1%)

Max. horizontal 
displacement – surcharge

3.36 2.86 (-14%) 3.51 (+4%)

Settlement 1 m behind 
the wall – 5 m

2.17 1.81 (-17%) 1.81 (-17%)

Settlement 1 m behind 
the wall – surcharge

2.80 2.65 (-5%) 3.04 (+8%)

Figure 13: Comparison of the settlements behind the wall (last two 
stages).

Figure 14: Comparison of the forces in the struts (for four stages: excavation 
down to 3, 4, and 5 m, and surcharge).
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displacements in the order of 30 mm. This case is 
well documented (Schweiger, 2002b) and often used 
to validate or calibrate numerical models; the results 
obtained with the HCD model have been presented in 
detail in El Arja (2020) and summarized in El Arja et al. 
(2019). The conclusions regarding the proximity between 
the HSM and HCD models are similar, but the comparison 
is less complete, since vertical displacements behind the 
wall had not been measured. Also, it can be noted that 
no attempt has been made yet to model deep excavation 
in clays with the HCD model or to analyze the effect of 
groundwater drawdown (Zhang et al., 2018a, 2018b).

5  Conclusion
This paper presents a simple elastoplastic constitutive 
model developed to improve the prediction of the vertical 
displacements behind retaining walls. 

One of the advantages of the HCD model is its 
simplicity: it involves only one plastic mechanism, and 
the elastic part of the model is linear and elastic. The yield 
surface is relatively classic and the hardening is isotropic. 
The originality of the model lies in the formulation of the 
flow rule that allows accounting for a contractive–dilatant 
behavior in the plastic regime. 

Among the eight parameters, four are familiar 
(Young’s modulus, Poisson’s ratio, tensile strength, and 
friction angle); one defines the initial position of the 
yield surface and the last three are clearly associated with 
the characteristic state, the gradual decrease in plastic 
volumetric strain, and the rate at which the yield surface 
evolves toward the failure surface. Identification of the 
parameters based on triaxial tests is explained, and an 
example of calibration is presented. 

For the numerical analysis of the experimental sheet 
pile wall of Hochstetten, the HCD model gives results 

that are rather closer to the measured values than HSM. 
It can be argued that the nonassociated flow rule of the 
HCD model allows to better control the volumetric plastic 
strains; at least, the influence of the model parameters is 
easy to anticipate, which facilitates the recalibration of a 
numerical simulation on experimental results. 
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