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Abstract: Failure may take different forms: reaching the 
Mohr–Coulomb limit stress condition is accompanied 
by yielding, strain localisation may occur in shear, 
compaction or dilatant bands, arbitrary large strain and 
loss of strength may be accompanied by a field of chaotic 
displacements of soil particles. Failure is also related to 
material instability. It takes place when there is a loss 
of uniqueness of constitutive relationships. It has been 
found that instability domains exist strictly inside the 
Mohr–Coulomb failure surface. Material instability can be 
detected by local Hill’s criterion, that is the second-order 
work at a point. Results of a coupled hydro-mechanical 
finite element analysis of an ‘earth dam – subgrade’ 
system at changing hydraulic boundary conditions have 
been presented in the article. Normalised values of the 
second-order work and factor of safety values by the shear 
strength reduction procedure for corresponding stages of 
the analysis were calculated. It has been shown that the 
value of the safety factor corresponds to the values of 
the second-order work. The analysis results show that a 
decrease in the value of the safety factor is accompanied 
by a decrease in the value of the second-order work until 
negative values occur at some points.

Keywords: second-order work; material stability; finite 
element analysis of stability; hydro-mechanical coupling

1  Introduction
One of the main problems of geomechanics is the 
definition of the failure criteria, experimental analysis 
and simulation of the failure occurrence. The definition 
of failure is based on the experimentally found fact that a 

certain group of load paths leads to a limit stress state that 
cannot be exceeded along these load paths. Therefore, the 
limit states are asymptotic states.

If we limit ourselves to the class of rate independent 
elastic–plastic constitutive relationships, they take the 
general form:

dσ=D:dε (1)

where the elastic–plastic tangent operator D depends on 
the history of stress and strain expressed by state variables 
and memory parameters, as well as on the direction of 
strain increment dε (determined by the matrix v=dε/‖dε‖).

The limit stress state is given by the following 
relationship:

dσ=0 when ‖dε‖≠0 (2)

Equation (2) implies: 

det D=0 and D:dε=0 (3)

If the constitutive equation is incrementally linear, D is 
independent of v. The first of equations (3) represents the 
limit state criterion (it is the equation of a hypersurface 
in six-dimensional stress space). The second equation 
represents the plastic flow rule, as it determines the 
direction of dε after reaching the limit stress state.

In the case of incrementally linear constitutive 
relationships (e.g. such as in classical elastic–plastic 
models, where the tangential operator has a different form 
under loading and unloading), where D discontinuously 
depends on v, det D=0 is also an equation of hypersurface 
in stress space involving several plastic mechanisms. In 
this case, it is a peculiar generalised plastic flow rule with 
vertices represented locally by pyramids [8].

Such a perception of failure in an elastic–plastic 
material resulted in a widely understood analysis of the 
limit stress state, in which it is assumed that the limit 
condition is reached at every point of the area under 
consideration. In reality, however, there are various 
forms of failure: localised in shear bands ([2], [15], [19]), 
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localised in compression or dilatancy bands, a diffuse 
form associated with geometric instability (buckling, 
torsional buckling) or a field of chaotic displacements. 
In the case of materials with the non-associated flow rule 
(with an asymmetric elastic–plastic matrix D), the theory 
of plasticity shows that by applying the appropriate 
bifurcation criteria, localised or diffuse forms of failure 
may occur before the plastic limit condition is reached [1].

According to the different forms of failure, different 
bifurcation criteria are given in the literature. Concerning 
the formation of the shear band as a result of the 
localisation of plastic deformations, the Rice criterion [15], 
based on the description of such an emerging shear band 
with normal n, corresponds to the vanishing value of the 
determinant of the acoustic tensor:

det (nT Dn)=0 (4)

For a material with the non-associated flow rule, condition 
(4) may occur before the limit state criterion (3) is met. 
This was verified experimentally for dense sand [4]. The 
strain localisation corresponds to the bifurcation of the 
strain field from a diffuse to strictly discontinuous form. 
This type of bifurcation can be called ‘discontinuous 
bifurcation’.

Continuous bifurcations [4] are also a form of failure 
without strain localisation. This form is called ‘diffuse 
failure’, a response path that bifurcates with the loss 
of constitutive uniqueness at the bifurcation point. 
Depending on the type of load path control (stress, strain 
or mixed), different response paths from the bifurcation 
point are possible. For certain types of control, the load 
ceases to be controllable in the sense of Nova [12], [13].

Continuous bifurcations and the associated diffuse 
forms of failure can be recognised by Hill’s stability 
criterion [8], which is related to the nil second-order 
work for the unstable states, that is to the zero value of 
the determinant of the symmetric part of the matrix D in 
incrementally linear constitutive relationships. 

This article presents the results of stability 
calculations of an earth dam subjected to seepage 
through its body due to changing upstream water levels. 
The Hardening Soil model was used as the constitutive 
model in the analysis. The safety factor was calculated 
using the shear strength reduction method for different 
upstream water levels using the finite element software 
ZSoil. Calculated increments of stresses and strains 
during changes in the water levels were used to calculate 
the values of the normalised second-order work at Gauss 
points, that is local Hill criterion. Maps of these values in 
the body of the earth dam and subsoil were made using a 

script in Python. The decreasing safety factor corresponds 
to the decreasing second-order work during water rising 
until the appearance of a zone with negative values of the 
second-order work. Negative second-order work values 
appear at the foot of the downstream slope for the highest 
upstream water level and the lowest factor of safety. 

Finite element stability analyses using the second-
order work criterion are very rare in the literature ([7], [9], 
[10], [14]). The results of the calculations presented in this 
article complement the achievements in this area.

2  Material Instability
The basic definition of stability was given by Lyapunov [11]. 
In continuum mechanics, it is as follows: a stress–strain 
state in a material with a defined load history is said to be 
stable when, for any positive scalar ε, there is a positive 
number η(ε) such that for all load increments limited by η, 
the resulting responses remain bounded by ε.

According to this definition, all limit stress states are 
unstable. If we consider a ‘small’ increase in stress directed 
from the limit state, it will cause a ‘small’ response in the 
form of an increase in strain, often treated as elastic. On 
the other hand, a ‘small’ increase in stress directed beyond 
the limit state causes a ‘large’ deformation response. 
Lyapunov’s definition clearly indicates that material 
instability can occur in an elastic–plastic medium. Since 
some limit states occur inside the domain bounded by the 
Mohr–Coulomb limit condition (and this is related to the 
non-associated flow rule), some instabilities are expected 
to occur before the Mohr–Coulomb limit state is reached.

Nevertheless, the Lyapunov definition is unsuitable 
for studying instability in geomaterials. For this 
purpose, a sufficient criterion of Hill’s stability is used 
[8]. According to Hill, a stress–strain state is unstable if 
one load direction can be continued in the sense of an 
infinitesimal increment without the supply of energy 
from an external source. In practice, this means that the 
deformation process will continue spontaneously. And in 
fact, it is; usually, failure requires some energy from an 
external source (e.g. foundation load), and in some cases, 
no energy is required (landslides, rock falls). 

Hill’s stability condition states that a stress–strain 
state is stable if for all increments (dσ, dε) related by the 
constitutive law the value of the second-order work is 
positive: 

d2 W=dσ:dε>0 ∀‖dε‖≠0 (5)
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For Drucker’s hyperelastic–plastic constitutive 
hypotheses (dσ:dεp>0) implies the Hill condition since in 
hyperelasticity dσ:dεe>0 and dσ:dε=dσ:dεe+dσ:dεp, due to 
the decomposition of the strain increment into the elastic, dεe, 
and plastic part, dεp, made in the classical theory of plasticity.

The second-order work (5) for a material with non-
associated flow rule depends only on the symmetric part 
of the constitutive operator D:

d2 W=dσ:dε=dε:D:dε= dε:Dsym:dε
Dsym=1/2(Dijkl+Dklij)

(6)

Thus, for incrementally linear constitutive relations, 
condition (5) is equivalent to

det Dsym>0 (7)

In the axial symmetry and plane strain conditions, a 
unique relationship was found between the second-
order work sign d2W and the sign of the determinant of 
the symmetric part of the constitutive matrix D: the area 
where d2W≤0 is contained in the area where detDsym≤0, for 
the general case of incrementally non-linear constitutive 
relationships [7].

If conditions (5) and (7) are met, stability is 
guaranteed. In the associated plasticity, stable behaviour 
implies a positive hardening modulus. The loss of stability 
occurs at yielding when the stress meets the plastic limit 
condition (the stress remains on the limit surface). 

The loss of stability in materials with the non-
associated flow rule is related to material properties 
that cause certain reactions to occur within the failure 
condition, such as static liquefaction [3].

Simulations of material instability using an 
incrementally linear and incrementally non-linear model 
are carried out by, among others, Darve with co-workers 
([4 - 7], [9]). They showed that there is an area of instability 
located strictly inside the boundary surface. Its existence 
was confirmed by simulation of element tests of loose sand 
[6] and dense sand [4] in the axi-symmetric conditions, as 
well as in a plane strain condition and for radial stress 
paths in the deviatoric plane for loose and dense sand [9].

The area of instability in the stress space contains 
points of potentially unstable states, that is such states 
of stress and strain related by the constitutive law, in 
which there is at least one direction of stress or strain 
increment leading to a zero or negative second-order 
work value. After the loss of stability, the unstable state 
will be maintained if the load direction coincides with 
the unstable direction and if the load is constant. In 
other words, if the load change occurs under stress (or 

force) control, the deformation of the material is not 
kinematically constrained. In such a case, the deformation 
response will be arbitrarily large and, therefore, will not 
satisfy the Lyapunov stability criterion.

3  Determination of Instability 
Domain in Element Tests
Determination of the domain of instability is done by 
simulating the element test (triaxial compression or 
tension, radial stress paths in the deviatoric plane, load 
in a plane strain condition and others) to the assumed 
stress values. Along the stress path, a check is made for 
the existence of a load direction resulting in zero second-
order work. When such a direction exists, a given point 
on the stress path is part of the boundary of the region 
of instability. Fig. 1 shows a scheme for determining the 
domain of instability in the principal stress space.

Domains of instability were found by the results 
of simulations of element tests of both loose and dense 
sands, in both drained and undrained conditions [7]. 
Dense sand exhibits a smaller domain of instability than 
loose sand. The domains of material instability identified 
in the simulations of triaxial compression and tension 
of dense sand described by the incrementally non-linear 
Darve model are shown in Fig. 2 as shaded areas before 
reaching the Mohr–Coulomb limit condition [7].

The domain of instability was found in the analysis 
of changes in the homogeneous stress and strain fields, 
which occur in the element tests. In the case of solving the 
boundary problem, failure (material instability) will occur 
only when the direction of the stress path is appropriate 
and the boundary conditions allow the formation of 
the failure mechanism. Predicting Hill instability in 
engineering problems is possible, which was previously 
demonstrated by, among others, Darve and Laouafa [7], 
Sternik [17], [18], Prunier et al. [14].

4  Hill’s Stability Criterion in Finite 
Element Analysis 
Hill proposed a criterion for the stability of an elastic–
plastic body, which, assuming small deformations, takes 
the form:

∫Vdσ:dεdV>0 ∀‖dε‖≠0 (8)
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where dσ is the Cauchy stress increment, and dε is the 
strain increment associated with the stress increment by 
the constitutive law. This criterion is sufficient but not 
necessary to maintain stability. This means that as long as 
condition (8) is met, we are sure that the body’s stability is 
maintained, but when condition (8) does not hold, there 
is a possibility of unstable behaviour. Condition (8) at the 
material point has the form (5).

In finite element calculations, the value of second-
order work is calculated at all points of Gaussian 
integration (pi) of the discretised area as the product 
of the increments of the stress and strain increments 
between two successive equilibrium states of the analysed 
problem. A convenient form of presentation that increases 

the readability of the distribution of the second-order 
work values is to normalise the d2W value by the product 
of stress and strain norms:

𝑑𝑑𝑑𝑑2𝑊𝑊𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =

𝑑𝑑𝑑𝑑2𝑊𝑊𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

‖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝‖‖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝‖
=

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
‖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝‖‖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝‖

 (1) (9)

In the appropriate conjugate spaces, the value (9) 
corresponds to the cosine of the angle between the stress 
and strain vector and is in the range <-1;1> [10].

Hill’s criterion in the domain (the global second-order 
work) given by equation (8) in a finite element model is 
the sum of the weighted d2Wpi values at all integration 
points Npi of the domain:

     
𝐷𝐷𝐷𝐷2𝑊𝑊𝑊𝑊 = ∑ 𝑑𝑑𝑑𝑑𝝈𝝈𝝈𝝈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝:𝑑𝑑𝑑𝑑𝜺𝜺𝜺𝜺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|𝐽𝐽𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝|

𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=1 = ∑ 𝐷𝐷𝐷𝐷2𝑊𝑊𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝=1  (2) (10)

where the product of the Jacobian at the point of 
integration |Jpi| and the weight ωpi expresses the part of the 
surface area of the element assigned to the given point of 
integration.

Figure 1: Procedure of determination of the boundary of instability domain: a) triaxial compression in Rendulic plane, b) plane strain 
conditions.

Figure 2: Instability domains (shaded areas) in simulations of 
triaxial compression and extension for dense sand described by 
incrementally non-linear model [7].



Second-Order Work Criterion in the Stability Analysis of an Earth Dam Subjected to Seepage    257

5  Application of Hill’s Criterion 
in the Analysis of an Earth Dam 
Subjected to Seepage

5.1  Geometry of the Model

An earth dam of dense medium sand on a silty subgrade is 
considered. For the earth dam and the subgrade, a model 
in a plain strain condition was made, shown in Fig. 3. Fig. 3 
shows the mechanical and hydraulic boundary conditions 
for displacements (red dashes) and fluid (blue dashes). 
Pink and blue triangles on both sides of the model denote 
upstream and downstream hydraulic heads varying in 
time. Seepage elements are also shown in Fig. 3 with light 
blue lines. Seepage elements are specified on edges of the 
model since it is not known a priori where the free water 
surface intersects the edge of the model. These elements 
automatically switch non-flux boundary condition to the 
pressure boundary condition below the water level. 

The construction of the earth dam was not modelled 
in the analysis. The initial stresses were generated for 
the entire ‘earth dam – foundation soil’ system at the 
beginning of the analysis.

The initial position of the groundwater table results 
from the given hydraulic boundary conditions. On the left 
edge of the model, the hydraulic height is 10 m above the 
base of the model, and on the right, it is 9 m. The base 
of the model is impermeable. The change of the position 
of the upstream water level on the left edge of the model 
implies the exertion of mechanical pressure of water on 
the earth dam slope and the subgrade.

5.2  Hardening Soil Model

Hardening Soil model was assumed for the soils in the 
considered task. This model is an elasto-plastic model 
with hardening and the non-associated plastic flow rule 
introduced into the shear mechanism. Greater accuracy 
in calculating strains compared to elastic-perfectly 
plastic models results from the use of three parameters 
characterising stiffness under loading (E50) and unloading 
(Eur) in the triaxial apparatus, and oedometric modulus 
(Eoed).

The basis for the formulation of the Hardening Soil 
model is the hyperbolic relationship between the vertical 
strain ε1 and the deviatoric stress q found in the triaxial 
apparatus during the virgin compression (Fig. 4).

The yield surface (Fig. 5) is defined by two equations. 
The first defines the deviatoric mechanism:

𝑓𝑓𝑓𝑓1 = 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎
𝐸𝐸𝐸𝐸50

𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎−𝑞𝑞𝑞𝑞

− 2 𝑞𝑞𝑞𝑞
𝐸𝐸𝐸𝐸𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

− 𝛾𝛾𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  for 𝑞𝑞𝑞𝑞 < 𝑞𝑞𝑞𝑞𝑓𝑓𝑓𝑓  (3) (11)

where γPS is a measure of plastic shear strain, being the 
hardening parameter. The limit deviatoric stress qf and the 
asymptotic stress qa are given as:

𝑞𝑞𝑞𝑞𝑓𝑓𝑓𝑓 = 2 sin𝜙𝜙𝜙𝜙
1−sin𝜙𝜙𝜙𝜙

(𝜎𝜎𝜎𝜎3 + 𝑐𝑐𝑐𝑐 cot𝜙𝜙𝜙𝜙), 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎 =
𝑞𝑞𝑞𝑞𝑓𝑓𝑓𝑓
𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓

 (4) (12)

Condition (11) contains two strength parameters c and ϕ. 
For most soils, the parameter Rf takes values in the range 
of 0.75–1.0. 

The cap surface for the compression is given by the 
equation:

𝑓𝑓𝑓𝑓2 = 𝑞𝑞𝑞𝑞2

𝑀𝑀𝑀𝑀2𝑛𝑛𝑛𝑛2(𝜃𝜃𝜃𝜃)
+ 𝑝𝑝𝑝𝑝2 + 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐2 (5) (13)

Figure 3: Geometrical model of the earth dam and subgrade.
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In Eq (13), r(θ) is a parameter defining the shape 
in the deviatoric section, depending on the Lode 
angle θ, proposed by van Eekelen, M is the material 
constant related to the pressure coefficient K0

NC, pc is the 
preconsolidation pressure at the intersection of the cap 
with the hydrostatic axis p. The change in stress pc is 
described by the hardening law:

𝑑𝑑𝑑𝑑𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 = −𝐻𝐻𝐻𝐻 � 𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐+𝑐𝑐𝑐𝑐 cot𝜙𝜙𝜙𝜙
𝜎𝜎𝜎𝜎𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓+𝑐𝑐𝑐𝑐 cot𝜙𝜙𝜙𝜙

�
𝑛𝑛𝑛𝑛

 (6) (14)

where H is a parameter controlling the rate of change of 
volumetric plastic strain depending on the oedometric 
modulus Eoed.

The plastic potential function in the deviatoric 
mechanism is given by the equation

𝑔𝑔𝑔𝑔1 = 1
2

(𝜎𝜎𝜎𝜎1 − 𝜎𝜎𝜎𝜎3) + 1
2

(𝜎𝜎𝜎𝜎1 + 𝜎𝜎𝜎𝜎3) sin𝜓𝜓𝜓𝜓𝑛𝑛𝑛𝑛  (7) 

 

(15)

where ψm is the mobilised angle of dilatancy depending 
on the friction angle in the critical state and the mobilised 
friction angle.

The associated plastic flow rule was assumed on the 
cap surface. The yield surface with distinguished parts 
and directions of evolution during hardening is shown in 
Fig. 5. A detailed description of the model can be found in 
[16] and [20].

5.3  Characteristics of Soils in the Model

The Hardening Soil model can be used in stability analysis 
according to the Hill criterion owing to the fact that it 
assumes strengthening and non-associated flow in the 
yield deviatoric mechanism.

The parameters of the Hardening Soil model and 
seepage are listed in Table 1. It was assumed that the 
subgrade of the earth dam is homogeneous, made of silt, 
and the earth dam is made of dense medium sand.

Figure 4: Hyperbolic relationship ε1-q for virgin triaxial compression.

Figure 5: Yield surface for Hardening Soil model.

Table 1: Soil parameters assumed in the analysis.

Parameter earth dam (mSa) subgrade (Si)

Eur
ref [MPa] 100 30

sref [kPa] 100 100

nur [-] 0.2 0.3

m [-] 0.5 0.9

sL[kPa] 10 10

E50
ref [MPa] 30 10

f [°] 35 25

c [kPa] 0 10

y [°] 5 10

Eoed [MPa] 38 10

OCR [-] 3 3

k [m/s] 10-6 10-7

Sr [-] 0 0.2

a [1/m] 10 1

K0 [-] 0.8 0.92
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6  Simulation of Water Level 
Changes
The calculations were carried out in several stages, in 
which the water level in the subgrade was first raised 
and then lowered, separated by checking the stability of 
the earth dam slopes using the shear strength reduction 
method. Changes in boundary conditions are shown 
in Fig. 6. The coupled hydro-mechanical analysis was 
carried out in a way that ensured free flow of water in the 
soil mass. The phreatic surface moved up steadily with 
the increase in the value of hydraulic heads on the vertical 
edges of the model (Fig. 6). The rate of changes in the 
hydraulic boundary conditions enabled the stabilisation 

of the phreatic surface at every stage of the calculations. 
Changes in the phreatic surface location at selected 
moments of time t = 0, 10, 18 days are shown in Fig. 7.

7  Results

7.1  Verification of Stability by the Shear 
Strength Reduction Method

Changes in the water level cause changes in the pore 
water pressure, which affects changes in the effective 
stresses and shear strength. Then, the level of hazard of 
the slope losing its stability, expressed by the value of 
the safety factor Fs, changes. Fig. 8 shows the possible 
forms of loss of stability of the earth dam slopes with 
the changing position of the water level in the subgrade 
and in the earth dam. The deformed shapes of the earth 
dam were obtained by shear reduction at selected stages 
of the analysis, after stabilisation of the water table at 

Figure 6: Variations of hydraulic boundary conditions over time.

Figure 7:  Variations of the phreatic surface location over time.

Figure 8: Changes of safety factor at different locations of the 
phreatic surface.
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the previously mentioned levels. As expected, as the 
water level rises, the value of Fs decreases, and when it 
decreases, the value of Fs increases.

7.2  Second-Order Work Maps

Normalised second-order work values were calculated 
in all Gauss points of the model based on the increments 
of effective stresses and strains caused by changes in the 
pore water pressures at selected moments of time. Fig. 9 
shows maps of these values. The normalised values of the 
second-order work change in the model during the rise 
and fall of the phreatic surface. Negative values of the 
second-order work appear at the toe of the downstream 
slope at the maximum water accumulation after 18 days 
from the beginning of the analysis (Fig. 9b). This result 
corresponds to the lowest value of the safety factor Fs=1.58 
(Fig. 8c).

8  Conclusions
As previous work by Darve and co-workers has shown 
material instability may occur in both loose and dense 
sands in undrained and drained conditions. In order to 
be able to predict it, constitutive relationships should take 
into account hardening and non-associated plasticity.

Instability can be detected using Hill’s criterion, which 
can be applied to a point (local criterion) or a domain 
(global criterion). This is the first criterion of bifurcation 
understood as a sudden or discontinuous change in the 
material response while maintaining constant or slightly 
disturbed load parameters.

The article presents the FEM calculations of the ‘earth 
dam – subgrade’ system, in which changes in stress 
and strain appear due to upstream water pressure on 
the earth dam slope and seepage through the earth dam 
body. The stress–strain relationship of the Hardening 
Soil model was used in the calculations. The increasing 
pore water pressure due to the upstream water level rise 
leads to a zone of negative second-order work values at 
the downstream slope’s toe. This is the area where slope 
instability usually begins. Thus, the local Hill criterion 
indicates instability that corresponds to reality. Negative 
second-order work also means that in the analysed case, 
the material instability occurs before reaching the limit 
stress condition for which d2W = 0. It is to note that in the 
case considered, points of instability were detected for 
dense sand in drained conditions.

The decreasing values of the second-order work in the 
entire area of the modelled problem of rising upstream 
water level correspond to the decreasing value of the earth 
dam safety factor determined by a more classical shear 
strength reduction method.

References
[1] Bigoni D., Hueckel T.: Uniqueness and localization - I. 

associative and non-associative elastoplasticity, International 
Journal of Solids and Structures, 28 (2), 1991, p. 197-213.

[2] Darve F.: An incrementally non-linear constitutive law of second 
order and its application to localization, in: Desai, Gallagher 
(Eds.), Mechanics of Engineering Materials, 1984, p. 179-196.

[3] Darve F.: Liquefaction phenomenon of granular materials 
and constitutive instability, Int. Journal of Engineering 
Computations, 7, 1996, p. 5-28.

[4] Darve F., Roguiez X.: Instabilities in granular materials, 
Computational Plasticity, Publ. CIMNE, Owen, Onate, Hinton 
(eds.), 1994, p. 720-727.

Figure 9: Maps of the normalised second-order work at different 
levels of the phreatic surface.



Second-Order Work Criterion in the Stability Analysis of an Earth Dam Subjected to Seepage    261

[5] Darve F., Roguiez X.: Homogeneous bifurcation in soils, in: 
Adachi et al. (Eds.), Localization and Bifurcation Theory for 
Soils and Rocks, Balkema Publ., 1998, p. 43-50.

[6] Darve F., Chau B.: Constitutive instabilities in incrementally 
non-linear modelling, Constitutive Laws for Engineering 
Materials, C.S. Desai (ed.), 1987, p. 301-310.

[7] Darve F., Laouafa F.: Slope failure analysis by a material 
instability criterion, ECCOMAS 2000, Barcelona, 11-14 
September 2000, p. 1-20.

[8] Hill R.: General theory of uniqueness and stability in elastic-
plastic solids, Journal of the Mechanics and Physics of Solids, 
6, 1958, p. 236-249.

[9] Laouafa F., Darve F.: Modelling of slope failure by a material 
instability mechanism, Comp. Geot., 29, 2002, 301-325.

[10] Lignon S., Laouafa F., Prunier F., Khoa H.D.V., Darve F.: Hydro-
mechanical modelling of landslides with a material instability 
criterion, Géotechnique, Vol. 59 (6), 2009, p. 513-524.

[11] Lyapunov A.M.: Problème général de la stabilité des 
mouvements, Annales de la Faculté des Sciences de Toulouse, 
9, 1907, p. 203-274.

[12] Nova R.: Controllability of the incremental response of soils 
specimens subjected to arbitrary loading programmes, J. Mech. 
Behav. Mater. 5 (2), 1994, p. 193-201.

[13] Nova R.: Controllability of geotechnical testing, Revue française 
de genie civil, Vol. 8, n° 5-6, 2004, p. 613-634.

[14] Prunier F., Chomette B., Brun M., Darve F.: Designing 
geotechnical structures with a proper stability criterion as a 
safety factor, Comp. Geotech., 71, 2016, p. 98-114.

[15] Rice J. R.: The localization of plastic deformation, In: Theoretical 
and Applied Mechanics, Fourteenth IUTAM Congress, 
Amsterdam, Koiter WT (ed.). 1976, 207-220.

[16] Schanz, T., Vermeer, P., and Bonier, P.: Formulation and 
verification of the Hardening Soil model, In: Beyond 2000 in 
Computational Geotechnics. Balkema, Rotterdam, 1999, 1-16.

[17] Sternik K.: Analiza stateczności skarpy w oparciu o kryterium 
Hilla, Mat. XVIII Konf. Nauk. „Korbielów 2006” n.t. „Metody 
numeryczne w projektowaniu i analizie konstrukcji 
hydrotechnicznych”, Kraków-Korbielów, 2006, s. 113-126.

[18] Sternik K.: Wykorzystanie kryterium stateczności Hilla w 
analizie deformacji nasypu na podłożu górniczym, Inżynieria 
Morska i Geotechnika, 3, 2015, s. 264-269.

[19] Vardoulakis I., Sulem J.: Bifurcation Analysis in Geomechanics, 
Chapman & Hall Publisher, 1995.

[20] Zimmermann, Th., Truty, A., Urbański, A., Podleś, K.: Z_Soil.
PC 2007 3D user manual. Theory, Tutorials and Benchmarks, 
Data Preparation, Elmepress International & Zace Services Ltd, 
Switzerland, 2007.


