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Abstract: The concept of equivalence of the realistic, 
initial reference model and the simplified, reduced model 
is proposed. In reduced models, the action of the soil 
on the structure is replaced by the action of a layer with 
prescribed properties, defined by a set of parameters. 
The main difficulty here is to find the parameter values 
required by the simplified theory. The subject of this work 
is to find the dependence of the parameters of the reduced 
model on the parameters of the full model, including 
realistic soil behavior, in order to ensure the equivalence 
of both models. We show the potential of the method by 
presenting two examples: Winkler and Pasternak’s model 
of a plate on the ground. We assume that both models are 
equivalent if they give identical results (displacements) at 
a finite number of observation points. An artificial neural 
network (ANN) is built in order to approximate and record 
the dependence of the parameters of the reduced model (at 
the network output) from the parameters of the full model 
(given at the network input). The complex network acts 
as a formula that assigns the parameters of the reduced 
model to a realistic description of the soil structure that 
is used for finite element method (FEM) modeling. The 
formalism we propose is quite general and can be applied 
to many engineering problems. The presented procedure 
is entirely numerical; it allows to calculate the parameters 
of the reduced model without resorting to symbolic 
calculations or additional theoretical considerations.

Keywords: ANN in geotechnics; Winkler model; 
Pasternak model; reduced models.

1  Introduction
Despite the enormous progress in modeling of soil–
structure interaction by discretization of the structure 
and the real domain of soil using finite element method 
(FEM), discrete element method (DEM), or finite difference 
method (FDM), the reduced models are still very popular in 
engineering practice and scientific literature (e.g. [1, 2, 6, 
11, 12, 25, 27, 35] and many other articles). There are various 
sources of complexity in numerical models. For example, 
for composites, the model that takes into account the 
microstructure at the whole macroscale by a simple fitting 
the FE mesh would lead to huge numerical task, impossible 
in practical applications. In this case the homogenous-
like, theoretically homogenized medium plays a role 
of the reduced model. In the field of civil engineering, 
there is an obvious need of analysis of the performance 
of the entire structure before it is built, with FE mesh 
defined for all elements of the structure. In geotechnics, 
the entire structure includes the structure itself and a 
part of soil’s domain supposed to be in interaction with 
the structure. Traditional reduced models in geotechnics 
operate as the action of some boundary constraints on 
the structure’s boundary, replacing the soil’s domain. 
These constraints must properly reflect the interaction 
between the structure and the soil that depends on both 
constitutive properties of the structure and those of the 
soil. For example, the action of the soil on the structure 
is replaced by the action of a linear or nonlinear elastic 
layer (e.g. Winkler’s model, [34, 35]; Pasternak’s two-
parameters model [22]) or a layer with other properties, 
described by a number of parameters [11, 12]. In the oldest 
model, that of Winkler, the unique parameter, stiffness 
of the Winkler’s spring, was several times generalized [1, 
18, 20, 23, 24, 32, 33]. In fact, this one-parameter model 
may require a few additional characteristics if the spring 
rate is to be different for compression and extension, or 
for varying spring’s stiffnesses for different stress levels. 
In the dynamic version of this model, it is necessary to 
enter the mass of the spring, parameters of viscous and 
dry friction damping. Finally, as many as six parameters 
can be needed. The formulae for the simplest set of 
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parameters are basing on arbitrary assumptions, like for 
example the depth of the soil’s active layer, and thus are 
always disputable or uncertain. The same can be stated 
for the two-parameters model of Pasternak [22, 29, 30]. In 
this model also the second parameter can be interpreted 
in two different manners: as a stiffness of a membrane-
like interface or Kirchhoff stiffness of the subgrade. The 
situation becomes more difficult if the strength of the 
springs must be accounted for, like for piles or retaining 
walls. In this last case, we need the surrogate of two 
Rankine’s coefficients and the Jaki’s type-parameter [35]. 
Each of these parameters results from individual analysis 
requiring various “a priori” assumptions. In the complex 
soil condition this reasoning requires a lot of engineering 
intuition. A  significant number of works are devoted to 
this issue. Recommendations regarding the values of 
these parameters can be found in each of the articles cited 
so far, some of which are devoted exclusively to this topic 
[14, 20, 21, 22, 23, 24, 25]. Winkler stiffness calculators 
have been developed in programs used for engineering 
calculations. The various hypotheses adopted in the 
cited analyses regarding the physical nature of the soil 
response, the depth to which the calculations are carried 
out, qualitative assumptions about the interaction of the 
soil with the structure lead to different estimates of the 
physical parameters of traditional models (which can be 
easily seen by analyzing any engineering problem).

The subject of this article is to find the dependence of 
the parameters of the reduced model on the parameters 
of the full model in an automatic manner, via a numerical 
procedure. First, we formalize the equivalence problem of 
two different models, the initial (model of reference) and 
the reduced one. The algorithm of the procedure leading 
to the definition of the equivalent model will be described 
in turn. To obtain the equivalent properties of the reduced 
model, the numerical tool involving a superposition of 
two artificial neural networks (ANN) is developed. The 
first neural network, called ANN_1, approximates a direct 
solution of the model of reference. Here, the input will 
be soil and structure characteristics and mechanistic 
properties of the materials. The output will contain some 
selected elements of solution of the reference problems 
(e.g. beam deflection or pile settlement). The second 
neural network in this superposition, namely ANN_2-1, 
approximates a solution of inverse problem related to the 
reduced model. This network is inverse with respect to the 
ANN_2 - the network approximating the direct solution 
of the reduced problem. Please note, that the symbol 
denoting the inverse function has been adopted here: if 
the network ANN approximates the function f, then the 
network that approximates the function inverse to f is 

indicated as ANN-1. The inverse network ANN_2-1 is trained 
by presenting the sets of values of the displacement in the 
observation points obtained as a solution of the reduced 
theory at the input of the ANN_2-1 and the trial parameters 
of the reduced model are elements of its output. This will 
be explained in detail in Section 3.3.

ANNs have been used in geotechnics for a long time. 
Most often, they are a tool for modeling constitutive 
relationships. The pioneering article here is the work 
[19], in which a classical neural network simulates the 
constitutive properties of a stratified soil medium based 
on tests with the falling weight deflectometer (FWD) 
dynamic test. A review of constitutive relationship 
modeling strategies is a very interesting issue, but it is 
not related to the topic of this article. It seems that the 
formulation of the reduced model was not the subject of 
ANN application. If it is assumed that the homogenized 
homogeneous medium is a model reduced in relation to 
the nonhomogeneous model, then the work [37] should 
be mentioned, but there the classical neural network 
serves only as a surrogate for the calculation of the 
effective modules of the homogenized medium performed 
classically with the use of FEM. This network is trained 
in such a way that the periodicity cell described with the 
necessary number of parameters is assigned effective 
modulus of elasticity. It seems that the concept of using 
a complex neural network to evaluate the parameters of a 
reduced model is a novelty.

Even though the work deals with issues related to 
soil–structure interaction, we are convinced that the 
general scheme of conduct may be useful in constructing 
simplified models in a more general context. This 
procedure seems to be novel and applicable in many 
domains of engineering.

2  Equivalence of the complex 
model (model of reference) and the 
reduced one
The main difficulty in the definition of the reduced 
model is finding values of the parameters required by 
the reduced theory. The values of these parameters are 
obviously functions of the engineering properties of the 
soil and structure, and are given by algebraic formulas 
only for elementary cases. 

Under the term “initial model” or “reference model” 
we will understand a complex, realistic description of soil 
and the structure interaction, formulated originally in the 
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form of a boundary value problem (BVP). Engineering 
approximations of the solutions of this BVP (with rare 
exceptions) can only be efficiently obtained by discretizing 
it, using the finite elements, the finite difference, or the 
discrete element method. We limit ourselves to the case, 
when the reference model is always FEM discretization 
built for the analyzed engineering problem. Therefore, 
the reduced model parameters will be selected to imitate 
the FEM results. In this article, a Coulomb–Mohr model 
implemented by FEM is assumed to serve as a constitutive 
model of soils. However, other constitutive models are also 
possible to be applicable within the proposed framework. 
The typical set of parameters (pCM1,…, pCMn) appearing 
in the Coulomb–Mohr reference model of a layered soil 
would consist of 5 elements by layer: 

�𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�, thickness of the layer (ℎ))1, … ,( (𝑐𝑐𝑐𝑐), (𝜑𝜑𝜑𝜑), (𝜓𝜓𝜓𝜓), �𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�, (ℎ))n}, 

�𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�, thickness of the layer (ℎ))1, … ,( (𝑐𝑐𝑐𝑐), (𝜑𝜑𝜑𝜑), (𝜓𝜓𝜓𝜓), �𝐸𝐸𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�, (ℎ))n}, {(ℎ))n}, 

where n is the number of layers. This set of known 
parameters can be extended as far as the FE code permits 
and the BVP requires.

The “reduced model” is formalized to be a pair of 
two elements: differential equation that it defines and 
an ordered set of parameters (p1,…, pn ) appearing in this 
equation. The physical range of the reduced model’s 
parameter values should always be known. From this 
range, the test values of the parameters used to train the 
ANN are selected. Only within this range the equivalence 
of the models will be valid. We assume that the physical 
sense of the equation and the parameters is clear. The 
assumption also is that this equation is solvable, with the 
solution being an ordered set of fields of displacement. 
This solution will be called “direct solution of the reduced 
problem”. 

It is important to formulate the criterion of 
equivalence of the two models. We assume that the two 
models are equivalent if they give identical (up to given 
tolerance) results in finite number of observation points. 
We assume that the reference model and the reduced one 
are formulated in displacements; thus, these results are 
simply the displacements in the observation points.

The choice of number and the placement of the 
observation points is not trivial in general. In all examples 
presented in this article (there are always beams or plates 
on the elastic support) this choice is inspired by the well-
known FWD test. In FWD test, the given mass is dropped 
down on the surface of the pavement and the deflections 
due to this impact are measured in maximum nine points 
in some prescribed distances. It is assumed that the set of 

this deflections fully characterize the pavement and the 
(possibly layered) subgrade, so the mechanical properties 
of them can be computed by back analysis. More about 
this method can be found in [7, 21, 24, 28]. All sets of 
observation points in this article coincide with the ones 
from FWD test.

The equivalence criterion assures that a complex, 
realistic behavior of the soil is taken into account in the 
frame of the reduced model.

3  Scheme of the procedure

3.1   Approximator of direct problems

The crucial point of the proposed algorithm is the use of 
ANN, which is trained with results of FE computations 
of reference model for many sets of model’s parameters. 
ANNs are operators that process an input dataset into 
an output set, taking expected values. ANN acts here 
as a shortcut that, in the simple form and in a very low 
computational cost, replaces the solution of the complex 
model. If there exist a function of many variables, the 
arguments of which are the parameters of the reference 
model and the values are the displacements in the 
observation points, the ANN is able to approximate this 
function. It is guaranteed by the theorem that proves that 
the ANN is a universal approximator of any function, 
functional, or operator [4, 9].

Figure 1 depicts the schematic for the feed-forward 
ANN, which is a general approximator of multivalued 
functions of multiple variables [8, 10]. If the input and 
output of the network are interpreted as an argument 
and image of a certain operator or function that the ANN 
approximates, the coincidence of the output values with 
the expected values should be satisfied for an infinite 
number of all possible sets of arguments at input, with the 
error (in the sense of minimal squares) remaining below 
an acceptable threshold. To achieve this, the network 
parameters (weights) are selected through successive 
corrections in an iterative process called “learning or 
network training”. The training of the network minimizes 
the difference between the ANN output signal and the 
target signal expected at the ANN output. The most 
common procedure of weight’s tuning is a minimization 
of the sum of squared errors calculated for all output 
neurons and for all input patterns. The back propagation 
error (BPE) procedure for such a minimization was used 
in this article. The complexity of the relation between 
parameters and the resulting set of displacements is 
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adjusted by the number of layers and number of nodes 
in the layers that results with a set of approximation’s 
parameters (weights and biases of the ANN), sufficiently 
rich. Detailed description of construction and operation 
of ANN have already been published in many textbooks or 
monographs [8, 9, 10, 13] and articles [14, 15, 16]. We refer 
to any of the above-listed manuals for details concerning 
the ANN.

In Figure 2, the approximation by ANN_1 of the FE 
solution for the initial model and the approximation by 
ANN_2 of the direct solution for the reduced model are 
shown in parallel. 

The training scheme of these networks is shown 
in the example: the reference model is a two-layer soil 
characterized by Young’s modulus and Poisson’s ratio 
with indices denoting the layer’s number, and EJ – the 
stiffness of the beam resting on this substrate (Figure 
2.a.). The trial values of these parameters are directed to 
the network input. The activation values of the network’s 
output neurons are interpreted as the deflection values 
at the observation points. The network is trained using 
the deflection values at these points obtained by FEM 
calculations. The scheme of training a network ANN_2 
that approximates the direct solution of the reduced 
model is presented in Figure 2.b. In this case, the three 
parameters of the model are the Winkler’s ground 
stiffness, the beam stiffness, and the ground parameter 
related to the Pasternak model. Output neurons have the 
same interpretation as in Figure 2.a.

Both solutions are classical, direct solution of the BVP. 
In what follows, we will need a so-called inverse solution 
of the reduced model.

3.2  Approximator of inverse problem

The process of determining the parameters appearing 
in the “direct” problem through the interpretation of 
measurement data obtained as a result of the conducted 
physical experiment in the real world, consists of 
the formulation and solution of the inverse problem. 
Unknowns of the inverse problem are the parameters 
occurring in the direct problem and should be selected so 
that the solution obtained then is the closest one to the 
given, observed values. In our case we need the values 
of the parameters of the reduced model, such that for 
the given displacements in the observation points, the 
direct solution is the closest to them. The minimum of 
the distance is understood in terms of the sum of squared 
deviations from the given data in observation points. 
For any given direct problem (any typical BVP), there 
are various inverse problems, the mathematical nature 
of which is different than that of the direct one. In our 
previous articles [15, 16], we described an application of 
ANN for the solution of inverse problem. 

It is to note, that in the algorithm we propose to 
construct the final, superposed neural network ANN_3 
(defined later in Section 3.3) we execute at once two 

Minimization
of the 

difference 

Figure 1: Scheme of the approximation of known learning output data (targets) by the transformation of the input signal on input layer 
by trained ANN. Segments between nodes are symbolic representations of weights (multipliers) that modify the nodal activities before 
attributing it to the next node.
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trainings: the one illustrated in Figure 2.a. and the other 
described in Figure 3.

The most important advantage of this method is that it 
is not necessary even to formulate the inverse problem. It 
is enough to generate, using the well-known engineering 
tools, a set of direct solutions. These direct solutions are 
then used as an input of the ANN, the output of which are 
corresponding parameters known in training. The well-
trained ANN in the “recall mode” attributes at output 
the correct parameters of the BVP for any direct solution 
presented at the input layer. In the case of inverse solution 
for reduced model, this procedure is illustrated in Figure 
3. Unfortunately, the solution of inverse problem by well-
trained ANN has also some disadvantages. The inverse 
solution is often nonunique and in this case the ANN 
requires many additional efforts to obtain all solutions. 

3.3  Procedure description

Assuming, that for the reduced problem the inverse 
solution is unique, the parameters of the reduced model 
can be easily computed via composed ANN_3:

ANN_3 = ANN_1@(ANN_2-1) (1)

Symbol @ is used here to denote an action of an operator 
(ANN_1) on an object (ANN_2-1)).

The structure of the ANN_3 is illustrated in Figure 4. 
It is seen that the composed, complex ANN_3 that assigns 
the parameters of the reduced model to the parameters of 
the initial model is composed as follows:

 – Input layer contains a number of neurons equal the 
number of parameters of the initial model.

 – Block of hidden layers consists of: 
o all hidden layers from the direct ANN_1 (coding 

the direct solution of the initial problem); 
o additional layer of nine neurons (in general—as 

many as the number of control points is) with 
weights: at the layer input—taken from network 
ANN_1, at the layer output—taken from ANN_2-1;

o all hidden layers from the inverse network ANN_2-1 
(coding the inverse solution of the reduced 
problem).

 – Output layer contains a number of neurons equal the 
number of parameters of the reduced model.

a. 

b. 
Figure 2. Synthetic representation of the results of the model solution in observation points in the form of 

Figure 2: Synthetic representation of the results of the model 
solution in observation points in the form of the ANN. Figure 2.a. 
represents the ANN approximation of the FE solution for the model 
of reference while in Figure 2.b. the same scheme applies for the 
reduced model.

Figure 3: Scheme of numerical solution of inverse problem defined 
for the reduced model. In training, input to the “inverse ANN” are 
displacements in the observation points—the direct solutions of the 
reduced model while targets are the values of the parameters for 
which these displacements have been computed. In recall mode, 
the well-trained ANN responds with correct model parameters for 
the set of displacements obtained at the input.
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The following steps should be accomplished to define 
the complex network ANN_3:

 – Execution of direct solutions of the initial problem, 
using FEM for representative set of input structural 
and soils parameters. In the results of this operation, 
an its element of training patterns set for the network 
ANN_1 has the form:

{input, target}i = { (combination of structural and 
soils parameters of BVP)i, (y1, y2, .. yi, .. y9)i } (2)

 – Execution of direct solutions of the reduced problem, 
for representative set of parameters of the reduced 
model. In the results of this operation an its element of 
training patterns set for the network ANN_2-1 has the 
form:

{ (y1, y2, .. yi, .. y9)i, (corresponding combination 
of parameters of reduced model)i } (3)

 – Training of the network ANN_1 with the set of training 
data (2);

 – Training of the network ANN_2-1 with the set of 
training data (3);

 – Creation of the resulting ANN_3 according to (1).

The application of complex network ANN_3 consists in 
introducing parameters of the initial, exact model of the 
problem at the network input. Then the parameters of 
the reduced problem will be calculated at the networks 
output.

4  Illustrative examples
In this section, two examples of application of the proposed 
procedure will be presented. The first one illustrates the 
application of the proposed procedure in the case of the 
Winkler model of the plate, in the second one we consider 
the beam on the two-parameter Pasternak soil model.

4.1  Stiffness coefficient for Winkler model of 
soil–structure interaction

The oldest reduced model is the model of a plate or beam 
resting on a Winkler elastic foundation. This model 
was formulated in 1876 by Winkler [34]. According to 
Winkler’s formulation, the ground reaction vector at a 
certain point on the soil-building boundary is determined 
by the structure displacement vector at that point and is 
proportional to the beam deflection. The coefficient of 
proportionality—Winkler stiffness is denoted by kw in the 
following. The assumptions of this model are well known 
and do not require discussion in this article.

4.1.1  Reference model

Figure 5 shows a diagram of the considered models. 
The concept of model corresponds to the finite concrete 
pavement on subgrade. Model A subgrade is represented by 
one layer of natural soil. Model B subgrade is represented 
by two layers of natural soil; each differ where thickness 

h1, 

E1, 

ν1, 

h2, 

E2, 

ν2, 

EJ 

Hidden 
layers of 
ANN_1 

y1  

y2 

y3 

… 

y9 

y1  

y2 

y3 

… 

y9 

Hidden 
layers of 
ANN_2(-1) 

kW 

EJ 

G 

Figure 4: The complex ANN_1@(ANN_2-1) acts as a formula that assigns the parameters of the reduced model to the realistic parametric 
descriptions of the problem that is used for its FE solution.
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of upper layer of natural soil change in a given range. 
Model C subgrade is represented from top: by a layer of 
stabilized soil (soil–cement mixture) and natural soil. 
Model A will be associated with the Winkler model of the 
plate. Model B and C will be associated with the Pasternak 
model of soil, respectively. The extract of data for the 
models are summarized in Table 1. Owing to the symmetry 
of the pavement model, only half of the geometry model 
was considered. Dimensions of the analyzed area of 
subgrade are l=8 m in horizontal direction and h depends 
on the model. The last layer of natural soil across models 
represents the last layer in elastic half-space theory and 
meets it requirements. This dimension ensures decay of 
general stresses according to Eurocode 7 guidelines, for 
example, recommends that integration be carried out to a 

depth where the effective stresses due to external loading 
are less than 20% of the effective primary stresses due to 
the soil’s own weight σy. The horizontal dimension of top 
slab layer is ls=4 m. This condition ensures proper decay 
of deflection along the horizontal direction of subgrade. 
As boundary condition horizontal displacements are 
blocked in the axis of symmetry and on the right edge of 
the model. At the bottom of the model, a full displacement 
lock is used. A static constant load is on the top surface 
with width of 15 cm and value of 700 kPa. The value and 
range of the load corresponds to the static vertical contact 
stresses apparent under the load plate of FWD vehicle. 
In engineering practice, the dynamic load from a falling 
mass is commonly replaced with an evenly distributed, 
equivalent static load [25]. Its realistic nonlinear course 

x 

y 

load 

8 x dL reading points 

(W0) Slab 

(W1) Soil layer 

ls

l

x 

y 

load 

8 x dL reading points 

(W0) Slab 

(W2) Soil layer 

(W1) Soil layer (model B) / Soil-cement (model C) 

3 x dL

ls

l

Figure 5: Diagram of the considered layered pavement models. From top: model A; model B, C.
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leads to dynamic analysis, which is very interesting, 
but is beyond the scope of this article. Such an analysis 
was presented in a conference keynote presentation [17]. 
Standard surface quality testing using FWD test is only 
inspiration. FWD device is used to apply a dynamic load 
to the road, which simulates the pressure from the vehicle 
tire.  Pavement deflection is measured using geophones. 
However, in this example, only the number and type of 
measurement data and their distance from the point 
where the load is applied will be taken from the real FWD 
test.

Figure 6 shows the finite element mesh adopted for 
the analyzed boundary problem. Six-node triangular 
elements were used. Edge size of equilateral triangle is 
5 cm at the top surface of the model, evenly increased 

to 15 cm at the bottom surface. The FEM model and the 
calculations described below were performed using the 
fempy software [36].

For the models defined above, total 150 sets of data 
were randomly generated. Total thickness hj for concrete 
slab or subgrade layer and deformation modules EJ 
for subgrade layers each time were random and it was 
assumed all other parameters of the task as invariant. 
The sampling was carried out using the Latin hypercube 
sampling (LHS) method. It is a statistical method of 
generating samples with a multivariate distribution [13]. It 
ensures that the random set of samples is representative for 
the given ranges of parameter variability (while the usual 
random sampling is just a collection of random numbers 
with no guarantees whatsoever). Then, calculations 

Table 1: Summary of data for the applied model of the layered pavement.

Model A Model B Model C

Layer hj

[cm]
vj
[-]

Ej
[MPa]

hj

[cm]
vj
[-]

Ej
[MPa]

hj

[cm]
vj
[-]

Ej
[MPa]

W0 15÷25 0,2 32000 15÷25 0,2 32000 15÷25 0,2 32000

W1 300 0,25 50÷200 100÷200 0,25 50÷200 20 0,17 9100÷13850

W2 - - - 300 0,25 50÷200 380 0,25 50÷200

Figure 6: Examples of finite element meshes of the models.
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were performed for all generated samples, registering uk 
deflections on the top surface of subgrade at 9 points 0, 
30, 60, 90, 120, 150, 180, 210, and 240 cm from the plane 
of symmetry under concrete pavement. Next additional 4 
deflections at 400, 415, 430, and 445 cm from the axis of 
symmetry on the top surface of subgrade. In these points, 
the influence of deflected plate on surrounding subgrade 
is registered for the Pasternak model. In this way, data was 
obtained in sequence (Ej

(p), uk
(p) where Ej

(p)—thickness of 
slab layer or subgrade and elasticity modules of subgrade 
layers, uk

(p)—deflections of top surface, p = 1,…, 150, j = 1, 2 
in model A, j = 1, 2, 3 in model B and C, k = 1,…, 13. 

4.1.2  Artificial Neural Networks that surrogate the 
results of the FE computations

Having the data from FE computations, the ANN that 
approximates the relation among the soil’s parameters 
and the deflections of the plate in the nine observation 
points will be constructed. According to (1), this is the 
first component of the complex network, namely ANN_1. 
The structure of that network depends on the case of 
the reference model, A, B, or C, having from two to four, 
input nodes for Young’s moduli of each of the layer and 
its widths (see Fig. 5). At the output we deal with nine or 
thirteen observable deflections in each case. In the case 
of 10 nodes in the hidden layer (model A) and 14 nodes 
(model B and C), the structure of the ANN_1 is similar 
for each of the analyzed examples. Network training was 
carried out on 125 sets of training data, the remaining 25 
were used for network testing. The criterion for stopping 
the training is always the minimum of the root mean 
square error (RMSE) error for the testing set.

Figure 7: Deflections of the pavement for the selected sets of stiffnesses. From left: model A, model B. Deflections between (from 2.4 to 4.0) [m] 
are not recorded.

sample 

sample 

Figure 8: Direct Nk network learning results for two of all nine 
reading point of pavement deflection: 0 in title—1st reading point, 7 
in title—8th reading point, target—reference deflection values, opt—
deflection values identified by the trained ANN. On the horizontal 
axis—number of patterns. The target and output coincide (the blue 
line is not visible!)
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The learning results are very good. A perfect match of 
the deflection values was achieved even though the ANNs 
have unfavorable architecture (more exits than inputs). 
It is worth noting that the quality of the fit on the test 
results does not differ from that on the training set, what 
indicates is that the ANN has been trained correctly.

4.1.3  Reduced model

The reduced model is here the classic Winkler model 
with bilateral soil reactions and the Euler–Bernoulli 
hypothesis for beam deflection was adopted. We consider 
a model of an elastic, homogeneous, finite beam band on 
a homogeneous Winkler elastic soil, loaded with a linear 
load on the plane of symmetry. In the inverse problem 
being solved, the thickness of the beam strip layer and the 
Winkler stiffness of the subsoil are identified. 

In order to construct ANN_2-1, it is necessary to solve 
the inverse problem with respect to following boundary 
value problem (reduced model):

Find the deflection line y(x) for the finite plate strand:

0≤x≤L,

where: L – half of the slab span [m].
The deflection line is a function of one variable that 

satisfies the equation:

          
𝑑𝑑𝑑𝑑4𝑦𝑦𝑦𝑦(𝑥𝑥𝑥𝑥)
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+ 4ο4𝑦𝑦𝑦𝑦(𝑥𝑥𝑥𝑥) = 𝑝𝑝𝑝𝑝(𝑥𝑥𝑥𝑥)
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
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4𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
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The solution to the above equation is of the form:

𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥) = 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒δ𝑥𝑥𝑥𝑥(𝐴𝐴𝐴𝐴 sin δ𝑥𝑥𝑥𝑥 + 𝐵𝐵𝐵𝐵 cos δ𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒−δ𝑥𝑥𝑥𝑥(𝐶𝐶𝐶𝐶 sin δ𝑥𝑥𝑥𝑥 + 𝐷𝐷𝐷𝐷 cos δ𝑥𝑥𝑥𝑥)  (4.2) 
(4.2)

𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥) = 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒δ𝑥𝑥𝑥𝑥(𝐴𝐴𝐴𝐴 sin δ𝑥𝑥𝑥𝑥 + 𝐵𝐵𝐵𝐵 cos δ𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒−δ𝑥𝑥𝑥𝑥(𝐶𝐶𝐶𝐶 sin δ𝑥𝑥𝑥𝑥 + 𝐷𝐷𝐷𝐷 cos δ𝑥𝑥𝑥𝑥)  (4.2) 

where: ws(x) – is a particular integral of equation (4.1), 
the form of which depends on the form of the function 
p(x), while the constants A, B, C, and D are obtained from 
boundary conditions.

We assume that p(x) is zero. In the reduced model, the 
load is concentrated at the symmetry plane. 

Using suitable loops over the parameters, the Maple 
code computes these deflections for given x-coordinates. 
In order to solve the inverse problem, it is now necessary 
to construct a set of learning patterns (input patterns), 
allowing for the approximation of inverse relationship by 
ANN. At the input of this network, solutions calculated 
from the formula (4.2) should appear. The selected 
measurement points are, of course, geophones. The 
standard distance between geophones ΔL was assumed 
equal to 0.3 m. The output of the network should contain 
the parameters of the reduced problem for which the 
solution (4.2) was obtained. Natural questions arise here 
about how to choose the test parameters of the problem 
explicitly. There should be as few of them as possible 
so that the task of training the network is not time-
consuming, and at the same time enough to make the 
approximation of the inverse relation accurate enough. In 
this example, there are two variables. The training set will 
contain pairs that match the notation:

u_0 
u_1 
u_2 

Figure 9: Normalized response of the network versus the pattern 
deflection values: u_0—results for 1st reading point, u_1—results for 
2nd reading point, u_2—results for 3rd reading point. The points on 
the graph also contain test data.

x 

kw

y 

uniform load 

8 x dL 

E, ν, h 

y(x) 

reading points 

Winkler elastic soil 

Figure 10: Scheme of the task of identifying the mechanical 
parameters of the surface and soil, description of symbols in the 
text.
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{ (y1, y2, .. yi, .. y9)i, (corresponding combination of 
parameters of reduced model: k, h)i } (5)

It should be noted that in any real technical problem 
related to the selected theoretical model, the range of 
identified quantities is usually well defined. For example, 
we can estimate with a high degree of certainty the range 
in which the Winkler stiffness or the value of the Pasternak 
constant, naturally related to the Kirchhoff constant of the 
soil medium, should lie. These assumptions are important 
because network training will only be performed for 
values in this range. It is generally believed that ANN 
extrapolates the results of the approximation very poorly 
beyond the interval for which it was trained. There are 
theoretical rules for sampling the parameter space, in 
the former example the LHS procedure has been used 
to this purpose. In this example, however, a simplified 
sampling method was used. All inputs were prepared 
using the Excell RAND() function, which returns evenly 
distributed random real numbers. In this simple example, 
we did not observe an unfavorable effect on the ANN’s 
ability to generalize. This means that the observed RMSE 
error on the test set decreased as fast as when using the 
LHS procedure in the previous example. In the solved 
example, the following limitations of the task parameters 
were adopted: the thickness of the beam is in the range [15 
cm, 25 cm], and the stiffness of the Winkler subsoil is in 
the range [9 000 kPa, 60 000 kPa]. A simplified random 
method of sampling the space of these parameters, basing 
on Excel RAND() function was adopted.  In Figure 11, a set 
of trial deflection of the beam-plate is shown.
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Reduced problem, displacements uy

Figure 11: Trial deflections computed in the frame of the reduced model. 

sample 

sample 

Figure 12: The results of learning the “inverse” network ANN_2-1 . 
Targets—are values of mechanical properties to learn, opt—values of 
mechanical properties identified by the trained net.
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4.1.4  Artificial Neural Networks that approximate the 
inverse relation for reduced model

According to (3), the network ANN_2-1 has 9 input and 2 
output neurons. The output parameters of pavement 
mechanical properties are W0 for slab layer and k (Winkler 
modulus) for subgrade layer. The network architecture 
consists of five neurons in one hidden layer. Network 
training was carried out on 125 sets of training data, the 
remaining 25 were used for network testing.

Figures 12 and 13 show the results of the pattern fits 
and deflections determined by the trained  ANN_2-1 for all 
150 samples.

As in the reference model (for direct dependence of 
the displacements on the soil’s parameters), the quality of 
the approximation of the inverse problem for the reduced 

model is also excellent. Thus, the necessary condition for 
constructing the complex neural network ANN_3 (1) are 
fulfilled.

4.1.5  Quality of the solution

In this section, the ANN1 net was verified with three 
samples of input parameters. The output results will be 
used for ANN_2-1 net verification. Figure 14 shows testing 
of the complex network. 

It is seen from the Figure 14 that the deflections of the 
plate for reduced model and the reference model coincide. 

4.2  Identification of two parameters of 
Pasternak model of soil–structure interaction

Pasternak’s model (also called the two-parameter model), 
published in 1954 [16], should be mentioned as another, 
qualitatively different classical reduced model. Despite 
various physical interpretations, this model is based on 
introducing a second derivative of deflection into the beam 
equation. According to the well-known interpretation, 
the parameter G of the Pasternak’s model is obtained by 
introducing a layer exhibiting an elastic shear response 
into the subsoil’s idealization scheme. In a situation 
where an elastic layer of the Winkler type also appears 
in the soils scheme—such a model is associated with the 
name of Kerr. Another interpretation suggests that the 
coefficient accompanying the second derivative of the 
beam’s deflection results from an action of the membrane 
underlying the beam or plate. While the first interpretation 
permits to guess the value of G as determined by Kirchhoff 

Figure 13: Normalized response of the “inverse” network versus 
expected output. The points on the graph also contain test data.
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Figure 14: Reference (target) and ANN_3 identified (net_approx.) deflections of the pavement for three random test cases.
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modulus of the soil, the second one the value of G in a very 
speculative manner. This problem can be important in the 
modeling of soils reinforced with geogrids.

4.2.1  Reference model

The reference model is the same as for the Winkler model, 
described in Section 4.1.1. The only exception is that for 
the Pasternak model the last four points, external with 
respect to the plate strip, are taken into account. To keep 
the same number of displacements as in the previous 
example, we skip the four last observation points under 
the plate strip.

4.2.2  Reduced model

The scheme of the Pasternak’s model is shown in Figure 
15. We assume that the plate-strip deflection line w(x) is 
identical to the soil deflection line u(x) at all points under 
the beam. Apart from the beam, the soil deflection line 
satisfies other differential (6.2) and coincides with the 
plate-strip deflection. 

Boundary problem written by equation (6), is 
associated with the scheme presented in Fig. 15 understood 
as the reduced model:

Find the deflection lines of the plate strip w(x) and the 
soil u(x) for x from the interval,

L x L− ≤ ≤

The deflection line w(x) is a function of one variable that 
satisfies the equation:

( ) ( ) ( ) ( )4 2

4 2
Wd w x d w x p xG k w x

dx EJ dx EJ E J
− + =

    (6.1) 
(6.1)

The soil deflection line u(x) is a function of one variable that 
satisfies the equation:

2

2 W
d u( x )G k u( x ) q( x )

dx
− + =

     (6.2) 
(6.2)

These equations should be solved for a given load p(x) with 
boundary conditions assuming zeroing of u(x) at an infinite 
distance from the origin of the coordinate system.
The solution to the above equations is of the form:

𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥) = 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒δ𝑥𝑥𝑥𝑥(𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥 + 𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒−δ𝑥𝑥𝑥𝑥(𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥 + 𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥)  (6.3) 
(6.3)

𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥) = 𝑤𝑤𝑤𝑤𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒δ𝑥𝑥𝑥𝑥(𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥 + 𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥) + 𝑒𝑒𝑒𝑒−δ𝑥𝑥𝑥𝑥(𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥 + 𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 δ𝑥𝑥𝑥𝑥)  (6.3) 

where: ws(x)—is a particular integral of equation (6.1), the 
form of which depends on the form of the function p(x), while 
the constants A, B, C, and D are obtained from appropriate 
boundary conditions.
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Figure 15: Idealization of the interaction of the pavement and soil, the positive direction of the axis and load as well as the assumed material 
parameters are marked. A detailed description of this scheme—in the text of the article.
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Figure 16: Comparison of the results of the network calculations with the known values of the material parameters of the Pasternak model: 
in Fig. 16.a, it is the Young’s modulus of the stiffness of the E beam; in Figure 16.b it is the Winkler stiffness of the ground kW; in Figure 16.c 
it is Pasternak’s constant G. These are the result of calculations in the reminder mode for a trained network with the structure of ANN_953, 
for 100 datasets, nine deflections each.
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The adopted designations are defined as follows:

21 4
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4
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Two sets of 150 pairs (3) were generated for random 
values of all three parameters of the Pasternak model. The 
sampling ranges of the parameter values are as follows: 
E in the range from 20 000 to 45000 MPa, kW in the range 
from 20 000 to 110 000 kPa.

4.2.3  Artificial Neural Networks that approximate the 
inverse relation for reduced model (the Pasternak one)

In this section, we discuss the training results of the 
network ANN_2-1—the second part of the complex 
network ANN_3 (3). For a three-layer network with nine 
input neurons (for nine values of measured deflections), 
five neurons in the hidden layer and three output 
neurons, very good training results were obtained for all 
three parameters of the reduced model. The value of the 
correlation coefficient of the training set with the network 
response was at the level of 0.997, while the mean square 
error of the calculated parameter values was of the order 
of 0.02. The network was not optimized; however, it seems 
that the adopted ANN variant is very simple. You can 
certainly limit the number of neurons in the input layer. 
Nothing is lost in the precision of the approximation with 
six input neurons with the values of the first six measured 
deflections. Discussion regarding the necessary minimum 
number of experimental deflection data is omitted here. 
Figures 16.a, 16.b, and 16.c show a comparison of the 
network calculation results with the known values of 
material parameters E, G, and kW. These comparisons are 
done in the recall mode for new, 200 verification datasets. 
None of these sequences were used during training. Only 
100 such comparisons are presented, for the sake of 
clarity.

4.2.4  Quality of the reduced model

It should be stated that the obtained ANNs: ANN_1 and 
ANN_2-1 are very accurate approximation of the direct 
and inverse relation, i.e. the dependence of the model 
parameters on the parameters of the reference model. The 
parameters of Pasternak’s model can therefore be easily 
calculated via ANN_3, without resorting to speculative 
theoretical formulas.

4.3  Possible applications and limitations 
of the proposed method of formulation of 
reduced models

The aim of this work is to present the method of determining 
the parameters of the reduced model rather than to 
present spectacular engineering applications. Therefore, 
the presented examples have the value of illustrating 
the proposed procedure. However, they illustrate three 
important elements of this procedure. Its success depends 
on the ability of the ANN_1 network to synthetically 
replace the FEM solution at several representative points, 
on the possibility of well-trained ANN_2-1 inverse network. 
The third, most important advantage of this procedure is 
the fact that it takes into account a very wide context of 
real ground conditions to determine the parameters of 
the reduced model. The examples show that the ANN_1 
network is a very good surrogate for the FEN solution in 
the scope we need. It was also shown that the ANN_2-1 
inverse network can be trained very well. In order to create 
the ANN_3 network, which generates the constitutive 
parameters of the reduced model as an output, it should 
be trained for a situation in which the FEM model is 
described by a large number of parameters describing, for 
example, a system of layers not parallel to the surface. This 
was not done in this article, but we are sure that ANN_1, 
even for an input composed of a large number of neurons, 
is a good approximation of the “straight” FEM solution at 
selected points [37]. The biggest limitation of the method 
is the ability to precisely train the inverse network. The 
inverse relationship is often not a one-to-one function and 
problems may arise with effective training of the network. 
We are convinced, however, that in a situation where a 
properly constructed reduced model is described with few 
parameters and each of these parameters characterizes 
a different aspect of the soil–structure interaction—the 
inverse network will always be a good approximator of the 
inverse relationship.

In the light of what was written above, the excellent 
agreement of the FEM solution with the approximate 
solution obtained using the reduced model was obtained 
only in a simple case built to illustrate the presented 
method. We are well aware of the fact that in the case 
of the subgrade under the slab, a model with variable 
Winkler stiffness should be adopted [20, 35]. We are 
convinced that also much more difficult and important 
problems can be solved using the developed method. For 
example, pile-bearing capacity calculation methods that 
require the use of transfer functions describing pile–soil 
interactions are, in our understanding, reduced models. 
The parameters of the transfer functions depend on the 
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properties and state of the soil in the vicinity of the pile 
lateral surface. These parameters can be obtained as the 
output values of the ANN_3 network, the input of which 
should be given the characteristics of the soils in the 
vicinity of the node where the transfer function is to be 
defined. Unfortunately, in this case, even the reference 
model is not easy to construct.

Such research, as well as the examples in this article, 
is the content of the doctoral dissertation being prepared 
by the first author of this article. The concept of the method 
was proposed by the second author, the third author is 
the creator of the original FEM code, which, thanks to the 
attached scripts, can be used as a training data generator 
[36].

5  Conclusions
In this article, the new method of identification of the 
parameters of reduced model has been established and 
exemplified for two classical reduced models of soil–
structure interactions in soil mechanics: model of Winkler 
and model of Pasternak.

The method assures that the parameters of the reduced 
model permit to generate the displacement (solutions of 
the reduced model) are very close to the solution of the 
reference model in selected points. 

The method is fully automatic, the correspondence 
between two models (initial and reduced) is assured 
without resorting to speculative theoretical consideration 
related to the formulation of the reduced model.

The resulting artificial neural network ANN_3 (see 
(3)) can be treated as a symbolic formula. Since its explicit 
form is too complex to be printed, the Excel formula that 
simulates the action of ANN_3 in recall mode will be soon 
available (please mail to the first author).

The authors continue their work in order to apply the 
procedure presented in this article to simplified nonlinear 
models that allow modeling materials behavior in limit 
states.
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