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Abstract: In the paper, generalized boundary conditions
were used for the homogenization of coefficients of the
Laplace partial differential equation in the context of
Darcy flow and heat diffusion phenomena. The meso-
scopic boundary value problem was defined and analyzed
from the variational perspective and the finite element
formulation of the homogenization problem was provided.
The matrix equation for the apparent macroscopic prop-
erties, resulting from FEM discretization, was derived
and utilized in two illustrative examples: homogeniza-
tion of the filtration coefficient of clay amended with
expanded shale and thermal conductivity of the soil with
multiple fractions. It is shown, that generalized boundary
conditions can provide very good homogenization results
without the assumption of the periodicity of the material.
For best results, the microscopic length parameter has
to be properly estimated.
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1 Introduction
Random composites, including porous, multi-phase me-
dia, such as soils, are often characterized by a high
variability of the filtration and thermal properties of the
components. Solving problems of mechanics for these
media on a macroscopic scale is therefore associated with
the necessity of volumetric averaging of these properties.
In numerical analysis, the problem of averaging (homog-
enization) is based on solving the appropriate boundary
value problem (BVP) on a series of statistical volume
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elements (SVEs) using the finite element method. Spe-
cial boundary conditions (BCs) are utilized which ensure
that the requirement of energy equivalence between the
macro and micro scales is fulfilled. In the case of defor-
mation analysis, the uniform, kinematic or static, and
periodic boundary conditions are used [3–10, 13, 15, 16].
However, these BCs have disadvantages: uniform ones
generate only limit values of effective properties (upper
limit for kinematic conditions and lower limit for static
conditions) and periodic conditions require periodic SVE.
In the case of random media, such as soil, ensuring the
periodicity of the solution, therefore, means altering the
microstructure of the material.

Recently, the so-called generalized BCs have been
proposed. They allow for determination of the apparent
composite properties, which reside between the solutions
provided by the uniform BCs, and, at the same time,
the periodicity of SVE is not required. In the work [22],
the usefulness of these conditions for homogenization of
the elastic properties of random matrix-inclusion com-
posites and the pixelized 2D media was analyzed. In the
present paper the same idea is used for coefficients of
the Laplace’s partial differential equation (PDE). Gen-
eral equations of the method and also the finite element
formulation are provided. Utilization of the generalized
boundary conditions is then demonstrated on two 3D
examples: homogenization of the filtration coefficient
and thermal conductivity of the soil. In this paper, only
the microscopic BVP is considered, since the boundary
conditions applied to the statistical volume elements are
investigated. The macroscopic values are visible here
only as the loading quantities and the averages over
SVEs.
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cial boundary conditions (BCs) are utilized which ensure
that the requirement of energy equivalence between the
macro and micro scales is fulfilled. In the case of defor-
mation analysis, the uniform, kinematic or static, and
periodic boundary conditions are used [3–10, 13, 15, 16].
However, these BCs have disadvantages: uniform ones
generate only limit values of effective properties (upper
limit for kinematic conditions and lower limit for static
conditions) and periodic conditions require periodic SVE.
In the case of random media, such as soil, ensuring the
periodicity of the solution, therefore, means altering the
microstructure of the material.

Recently, the so-called generalized BCs have been
proposed. They allow for determination of the apparent
composite properties, which reside between the solutions
provided by the uniform BCs, and, at the same time,
the periodicity of SVE is not required. In the work [22],
the usefulness of these conditions for homogenization of
the elastic properties of random matrix-inclusion com-
posites and the pixelized 2D media was analyzed. In the
present paper the same idea is used for coefficients of
the Laplace’s partial differential equation (PDE). Gen-
eral equations of the method and also the finite element
formulation are provided. Utilization of the generalized
boundary conditions is then demonstrated on two 3D
examples: homogenization of the filtration coefficient
and thermal conductivity of the soil. In this paper, only
the microscopic BVP is considered, since the boundary
conditions applied to the statistical volume elements are
investigated. The macroscopic values are visible here
only as the loading quantities and the averages over
SVEs.

2 M. Wojciechowski

2 Microscopic BVP – Laplace
equation

Let us consider anisotropic Laplace equation defined on
SVE 𝜔𝜔:

− (𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖),𝑖𝑖 = 0, (1)

where 𝑎𝑎𝑖𝑖𝑖𝑖 is a tensor function of parameters (positive
definite) and 𝑝𝑝 is an unknown function. In the scope of
computational homogenization, BCs for this PDE are
determined by the averaging equation:

∫︁

𝜔𝜔

𝑝𝑝,𝑖𝑖 d𝜔𝜔 =
∫︁

𝜕𝜕𝜔𝜔

𝑝𝑝𝑝𝑝𝑖𝑖 d𝑠𝑠 = 𝑉𝑉 𝑉𝑉,𝐼𝐼 , (2)

where 𝑉𝑉,𝐼𝐼 is a known quantity, which usually results from
the upper scale computations, 𝑉𝑉 is the SVE volume and
𝜕𝜕𝜔𝜔 is the SVE boundary. Weak form of equation (1)
reads as

−
∫︁

𝜔𝜔

(𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖),𝑖𝑖 𝑞𝑞 d𝜔𝜔 = 0, (3)

with 𝑞𝑞 being an arbitrary testing function belonging
to the same function space as 𝑝𝑝. Applying Gauss-
Ostrogradsky theorem the following is obtained:

∫︁

𝜔𝜔

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖𝑞𝑞,𝑖𝑖 d𝜔𝜔 −
∫︁

𝜕𝜕𝜔𝜔

𝑟𝑟𝑞𝑞 d𝑠𝑠 = 0, (4)

where 𝑟𝑟 is interpreted as the boundary flux. In the spirit
of generalized BCs [22], the following is assumed at
boundary:

𝑟𝑟 = −𝜅𝜅𝑝𝑝, (5)

where 𝜅𝜅 is called the boundary transfer function and

𝑝𝑝 = 𝑝𝑝 − 𝑉𝑉,𝐼𝐼𝑥𝑥𝑖𝑖 (6)

is the perturbation of 𝑝𝑝 at boundary. Function 𝜅𝜅 has to
be guessed since it depends on the properties of SVE
and its surrounding (see section 4). In addition, the aver-
aging equation (2) is enforced by means of the Lagrange
multipliers term. The considered weak form is then given
as

∫︁

𝜔𝜔

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖𝑞𝑞,𝑖𝑖 d𝜔𝜔 +
∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝑝𝑝𝑞𝑞 d𝑠𝑠 + Λ𝐼𝐼

⎛
⎝

∫︁

𝜕𝜕𝜔𝜔

𝑞𝑞𝑝𝑝𝑖𝑖 d𝑠𝑠 − 𝑉𝑉 𝑉𝑉,𝐼𝐼

⎞
⎠

(7)

= 0,

where Λ𝐼𝐼 are the mentioned multipliers which are real
numbers.

3 Variational considerations
Solution of problem (7) is equivalent to the unconstrained
minimization:

min
𝑝𝑝,Λ𝐼𝐼

Π(𝑝𝑝, Λ𝐼𝐼), (8)

where potential Π is given by

Π(𝑝𝑝, Λ𝐼𝐼) = 1
2

∫︁

𝜔𝜔

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖𝑝𝑝,𝑖𝑖 d𝜔𝜔 (9)

+
∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝑝𝑝𝑝𝑝 d𝑠𝑠 + Λ𝐼𝐼

⎛
⎝

∫︁

𝜕𝜕𝜔𝜔

𝑝𝑝𝑝𝑝𝑖𝑖 d𝑠𝑠 − 𝑉𝑉 𝑉𝑉,𝐼𝐼

⎞
⎠ .

Minimum is found by equating variations of Π in 𝑝𝑝 and
Λ𝐼𝐼 to 0, that is,

𝛿𝛿Π(𝑝𝑝, Λ𝐼𝐼 , 𝛿𝛿𝑝𝑝) =
∫︁

𝜔𝜔

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖𝛿𝛿𝑝𝑝,𝑖𝑖 d𝜔𝜔 +
∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝑝𝑝𝛿𝛿𝑝𝑝 d𝑠𝑠 (10)

+ Λ𝐼𝐼

∫︁

𝜕𝜕𝜔𝜔

𝛿𝛿𝑝𝑝𝑝𝑝𝑖𝑖 d𝑠𝑠 = 0,

𝛿𝛿Π(𝑝𝑝, Λ𝐼𝐼 , 𝛿𝛿Λ𝐼𝐼) = 𝛿𝛿Λ𝐼𝐼

⎛
⎝

∫︁

𝜕𝜕𝜔𝜔

𝑝𝑝𝑝𝑝𝑖𝑖 d𝑠𝑠 − 𝑉𝑉 𝑉𝑉,𝐼𝐼

⎞
⎠ = 0. (11)

The above equations must be fulfilled for any admissible
variations 𝛿𝛿𝑝𝑝 and 𝛿𝛿Λ𝐼𝐼 . So, let us consider 𝛿𝛿𝑝𝑝 = 𝑥𝑥𝑖𝑖1𝑖𝑖, and
thus, 𝛿𝛿𝑝𝑝,𝑖𝑖 = 1𝑖𝑖. From the first equation, the following is
obtained:

−Λ𝐼𝐼 = 1
𝑉𝑉

∫︁

𝜔𝜔

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖 d𝜔𝜔 + 1
𝑉𝑉

∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝑝𝑝𝑥𝑥𝑖𝑖 d𝑠𝑠. (12)

Recognizing that
𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝,𝑖𝑖 = 𝑓𝑓𝑖𝑖 (13)

is the flux quantity defined on SVE, then the first com-
ponent in the right-hand side of equation (12) is its
volumetric average, interpreted as the macroscopic flux
𝐹𝐹𝐼𝐼 , and:

−Λ𝐼𝐼 = 𝐹𝐹𝐼𝐼 + 1
𝑉𝑉

∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝑝𝑝𝑥𝑥𝑖𝑖 d𝑠𝑠. (14)

Thus, Lagrange multipliers stand for the macroscopic flux
(with minus sign) modified by the component related
to the boundary perturbation 𝑝𝑝. Usually this second
component is enforced to vanish by applying 𝑝𝑝 = 0 or by
assuming its periodicity on 𝜕𝜕𝜔𝜔. However, this is not the
case in the current framework of generalized BCs, where
perturbation is allowed, but controlled by 𝜅𝜅 transfer
coefficient.
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Let us also consider 𝛿𝛿𝛿𝛿 = 𝛿𝛿, and thus, 𝛿𝛿𝛿𝛿,𝑖𝑖 = 𝛿𝛿,𝑖𝑖.
Again, from equation (10), the following is obtained:

∫︁

𝜔𝜔

𝑎𝑎𝑖𝑖𝑖𝑖𝛿𝛿,𝑖𝑖𝛿𝛿,𝑖𝑖 d𝜔𝜔 +
∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝛿𝛿𝛿𝛿 d𝑠𝑠 + Λ𝐼𝐼

∫︁

𝜕𝜕𝜔𝜔

𝛿𝛿𝑝𝑝𝑖𝑖 d𝑠𝑠 = 0. (15)

Inserting (2), (13), and (14) into (15), after some trans-
formations, the following is derived:

𝐹𝐹𝐼𝐼𝑃𝑃,𝐼𝐼 = 1
𝑉𝑉

∫︁

𝜔𝜔

𝑓𝑓𝑖𝑖𝛿𝛿,𝑖𝑖 d𝜔𝜔 + 1
𝑉𝑉

∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝛿𝛿𝛿𝛿 d𝑠𝑠. (16)

This formula is identified as the Hill-Mandel macroho-
mogeneity principle, which relates macroscopic energy
(left-hand side) to the average of the microscopic energy
(right-hand side). Again, the second component on the
right will vanish with vanishing or periodic perturbation
𝛿𝛿.

4 Selection of 𝜅𝜅

It has been shown [22] that solution of the system of
equations (10) and (11) is unique for the given SVE and
for the specific boundary transfer function 𝜅𝜅 chosen. This
function is the key ingredient of the generalized BCs. In
general, the only requirement is that it must be positively
real-valued, that is, 𝜅𝜅 : 𝜕𝜕𝜔𝜔 → R+. Specifically, if the
values of 𝜅𝜅 tend to 0+ all over the boundary 𝜕𝜕𝜔𝜔, then the
solution becomes governed by the averaging, Lagrange
multipliers term. This results in (almost) unconstrained
perturbation 𝛿𝛿, so this is equivalent in applying the so-
called static or minimal kinematic BCs (see, e.g., [20]).
On the other hand, if 𝜅𝜅 → ∞, then it acts as the penalty
parameter and the solution is such that perturbation 𝛿𝛿

vanishes. This is equivalent in applying the kinematic
uniform BCs, where 𝛿𝛿 = 𝑃𝑃,𝐼𝐼𝑥𝑥𝑖𝑖 is enforced on 𝜕𝜕𝜔𝜔. If the
macroscopic fluxes obtained with these two 𝜅𝜅 selections
and by application of the macroscopic gradient 𝑃𝑃,𝐼𝐼 are
denoted as 𝐹𝐹 0

𝐼𝐼 and 𝐹𝐹 ∞
𝐼𝐼 , then the following holds:

𝐹𝐹 0
𝐼𝐼 𝑃𝑃,𝐼𝐼 ≤ 𝐹𝐹𝐼𝐼𝑃𝑃𝐼𝐼 ≤ 𝐹𝐹 ∞

𝐼𝐼 𝑃𝑃,𝐼𝐼 , (17)

where 𝐹𝐹𝐼𝐼 is the flux obtained with any other admissible
𝜅𝜅 choice. In other words, solutions of the considered
homogenization problem are properly bounded by the
limiting cases.

In this paper, by analogy with the approach pre-
sented in [22] function 𝜅𝜅 is taken as:

𝜅𝜅 = 1
ℓ

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖, (18)

where ℓ is interpreted as the microscopic length parame-
ter, 𝑎𝑎𝑖𝑖𝑖𝑖 describes the material crossing the boundary, and

𝑝𝑝𝑖𝑖 is a unitary vector, normal to 𝜕𝜕𝜔𝜔. Basic assumption
which stands behind this choice is that at the boundary,
the following holds:

𝛿𝛿𝑝𝑝𝑖𝑖 = 𝛿𝛿,𝑖𝑖ℓ. (19)

If the SVE neighbourhood is taken exactly the same
as at the boundary, then this assumption leads to the
following external loading term:

𝑟𝑟 = −𝑎𝑎𝑖𝑖𝑖𝑖𝛿𝛿,𝑖𝑖𝑝𝑝𝑖𝑖 = −1
ℓ

𝑎𝑎𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝛿𝛿 = −𝜅𝜅𝛿𝛿. (20)

As a final remark, it should be pointed out that the
selected 𝜅𝜅 depends on the boundary orientation, and
thus, it is variable even if 𝑎𝑎𝑖𝑖𝑖𝑖 is constant all over the
boundary. However, for the case of isotropic materials,
where 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝛿𝛿𝑖𝑖𝑖𝑖 , with 𝑎𝑎 being a constant scalar function
and 𝛿𝛿𝑖𝑖𝑖𝑖 being Kroenecker delta, the orientation becomes
unimportant and 𝜅𝜅 = 𝑎𝑎

ℓ .

5 Finite element implementation
Solutions 𝛿𝛿 of the problem defined by equations (9), (10),
and (11) have to belong to the Sobolev functional space
𝐻𝐻1(𝜔𝜔) of differentiable functions (at least once). This is
ensured by the piece-wise polynomial base functions used
in standard FEM discretization. Rearranging equation
(9) to the form

Π(𝛿𝛿, Λ𝐼𝐼) = 1
2

∫︁

𝜔𝜔

𝑎𝑎𝑖𝑖𝑖𝑖𝛿𝛿,𝑖𝑖𝛿𝛿,𝑖𝑖 d𝜔𝜔 +
∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝛿𝛿𝛿𝛿 d𝑠𝑠 +

− 𝑃𝑃,𝐼𝐼

∫︁

𝜕𝜕𝜔𝜔

𝜅𝜅𝑥𝑥𝑖𝑖𝛿𝛿 d𝑠𝑠 + Λ𝐼𝐼

⎛
⎝

∫︁

𝜕𝜕𝜔𝜔

𝛿𝛿𝑝𝑝𝑖𝑖 d𝑠𝑠 − 𝑉𝑉 𝑃𝑃,𝐼𝐼

⎞
⎠

(21)

and skipping details of the finite element approximation
(see [20, 22] for that) one ends up immediately in discreet
version of this potential:

̂︀Π(p, Λ) = 1
2p𝑇𝑇 (K + D) p − p𝑇𝑇 G𝑃𝑃 + Λ

(︀
p𝑇𝑇 B − 𝑃𝑃 𝑇𝑇 𝑉𝑉

)︀
,

(22)
where p is global vector of unknowns of length 𝑀𝑀 (𝑀𝑀 –
total number of nodes in discretization), K is a global
linear operator of size 𝑀𝑀 × 𝑀𝑀 , D is the boundary con-
straint matrix, also of size 𝑀𝑀 × 𝑀𝑀 , G is a boundary
loading matrix of size 𝑀𝑀 × 𝐷𝐷 (𝐷𝐷 – space dimension: 2
or 3), B is a matrix resulting from the application of
averaging constraint, also of size 𝑀𝑀 × 𝐷𝐷, Λ is a vector
of unknown Lagrange multipliers of length 𝐷𝐷, and 𝑃𝑃 is
a vector of known macroscopic gradient (also of length
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𝐷𝐷). Minimum of potential ̂︀Π is found by equating its
variations in p and Λ to 0, which is denoted as

𝜕𝜕̂︀Π(p, Λ)
𝜕𝜕p = (K + D)p + BΛ − G𝑃𝑃 = 0, (23)

𝜕𝜕̂︀Π(u, Λ)
𝜕𝜕Λ = B𝑇𝑇 p − 𝑃𝑃 𝑉𝑉 = 0. (24)

This is a system of linear equations
[︂
K + D B

B𝑇𝑇 0

]︂ [︂
p
Λ

]︂
=

[︂
G𝑃𝑃

𝑃𝑃 𝑉𝑉

]︂
, (25)

which is solved by standard numerical methods.

6 Homogenized material tensor
Let us assume that between the macroscopic quantities
𝑃𝑃,𝐽𝐽 and 𝐹𝐹𝐼𝐼 exists a constitutive relation analogous to
the microscopic one, that is,

𝐹𝐹𝐼𝐼 = 𝐴𝐴𝐼𝐼𝐽𝐽 𝑃𝑃,𝐽𝐽 , (26)

where 𝐴𝐴𝐼𝐼𝐽𝐽 is an apparent, homogenized material tensor.
Using the discretized version of equation (14) and the
linear system (25), this tensor can be derived as

𝐴𝐴𝐼𝐼𝐽𝐽 = A = (27)
1
𝑉𝑉

[︁
R − GTG⋆ +

(︀
GTB⋆ − I𝑉𝑉

)︀ (︀
BTB⋆

)︀−1 (︀
BTG⋆ − I𝑉𝑉

)︀]︁
,

where I is a 𝐷𝐷 × 𝐷𝐷 identity matrix, R is a 𝐷𝐷 × 𝐷𝐷 matrix
resulting from the following integration (computed by
means of the finite element discretization)

R = 𝑅𝑅𝐼𝐼𝐽𝐽 =
∫︁

𝜕𝜕𝜕𝜕

𝜅𝜅𝜅𝜅𝑖𝑖𝜅𝜅𝑗𝑗 d𝑠𝑠, (28)

and G⋆ and B⋆ are the 𝑀𝑀 × 𝐷𝐷 - shaped solutions

G⋆ = (K + D)−1G, (29)
B⋆ = (K + D)−1B, (30)

found using direct or iterative numerical solvers. It is
clear that there is no dependence between the macro-
scopic tensor 𝐴𝐴𝐼𝐼𝐽𝐽 and the applied macroscopic gradient
𝑃𝑃,𝐽𝐽 . This is due to the linearity of the problem. In other
words, explicit solution p of the system (25) is actually
not needed for homogenization purposes. However, this
solution can be always recovered for a specific 𝑃𝑃,𝐽𝐽 = 𝑃𝑃

via the linear operation

p = H𝑃𝑃 (31)

where H is a 𝑀𝑀 × 𝐷𝐷 - shaped matrix given by:

H = G⋆ + 𝑉𝑉 B⋆ − B⋆
(︀
B𝑇𝑇 B⋆

)︀−1 B𝑇𝑇 G⋆ (32)

7 Example 1 – hydraulic
conductivity

Darcy flow in porous media is ruled by the equations

𝑞𝑞𝐷𝐷
𝑖𝑖,𝑖𝑖 = 0, (33)

𝑞𝑞𝐷𝐷
𝑖𝑖 = −

𝑘𝑘𝑖𝑖𝑗𝑗

𝛾𝛾
𝑝𝑝,𝑗𝑗 , (34)

where 𝑞𝑞𝐷𝐷
𝑖𝑖 is a fluid flux, 𝑝𝑝,𝑗𝑗 is a pressure gradient, 𝑘𝑘𝑖𝑖𝑗𝑗

is a permeability tensor depending on the position in
SVE (in velocity units), and 𝛾𝛾 is a specific weight of
the fluid. The minus sign signifies the problem is nega-
tively defined, that is, the flow direction is from higher
to lower pressure. Clearly, this is formally equivalent to
the Laplace equation described in previous sections. As
a homogenization example let us consider water flow
(𝛾𝛾 = 9.81 g

cm3 ) in a porous material consisting of a clay
matrix and the expanded shale grains surrounded by
the interface layer. Isotropy of the constituents is as-
sumed in this example. Clay permeability is given by
𝑘𝑘𝑚𝑚 = 6.5e−9 m

s , expanded shale permeability is given
by 𝑘𝑘𝑠𝑠 = 8e−5 m

s and the permeability of interface 𝑘𝑘𝑡𝑡

is variable in this example, ranging from 6.5e−9 m
s to

8e−3 m
s [11]. The size of grains was taken as 𝑑𝑑 = 0.005 m,

and the expected grain volume ratio was taken as 20.5%.
Ten spherical SVEs were considered which contained,
on average, 32 randomly distributed spherical inclusions
(see Figure 1). The interphase thickness has been taken
as 0.00025 m, and this determines its overall volume
ratio around 3.5%. SVEs were drawn carefully from the
larger volume, containing 105 inclusions distributed in
a random uniform way, with the volume ratio equal to
24% (20.5% for grains and 3.5% for the interphase layer).
The number of SVEs was selected in such a way that
the mean value of the grain volume ratio does not differ
from the expected value by more than 5% with the con-
fidence level equal to 95%, as described in [21]. Detailed
considerations related to the interdependence between
the size and the required number of SVEs for obtaining
meaningful homogenization results were not included in
this example. Readers interested in this topic are referred
to the literature [9, 12, 22]. Here, it was assumed, that
the generated set of 10 relatively large SVEs can pro-
vide results which are not accidental. This assumption
has been confirmed by the statistical properties of the
homogenization results.

In this example, the relatively large values of ℓ pa-
rameter have been considered for establishing the bound-
ary transfer function 𝜅𝜅. This is dictated by the fact,
that in case of stiff (or highly permeable) inclusions
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Figure 1: Example of SVE used for homogenization of perme-
ability coefficient. Approximately 32 spherical inclusions are
distributed in a random uniform way and surrounded by the
interphase layer.

crossing the SVE boundary, which is the case here, the
Neumann kind, uniform static, boundary conditions are
much more suitable. The uniform kinematic BCs would
generate highly over-stiffened response, even for large
SVEs [14, 18, 22]. Relatively large values of ℓ assure
the solution is close to the results generated using the
uniform static (uniform flux) BCs, as it was described
in section 4. For comparisons, the following sequence of
ℓ
𝑑𝑑 ratios was considered in computations: [103, 104, 105].

Every SVE realization was discretized into the sec-
ond order, 10-node tetrahedral finite elements of variable
size, resulting in meshes with over 106 nodes. A system
of equations (25) was then formed, for every ℓ

𝑑𝑑 choice,
and apparent homogenized permeability tensors 𝐾𝐾𝐼𝐼𝐼𝐼

were found using equation (27). All calculations were
performed using the fempy Python package [19] sup-
ported by the gmsh software [2] for mesh generation
and umfpack [1] for fast sparse direct solver. A server
equipped with 2x Intel Xeon Gold 5220R processor, 684
GB RAM, and Nvidia Tesla V100S was utilized for fast
computations.

The results of homogenization, averaged over 10
apparent 𝐾𝐾𝐼𝐼𝐼𝐼 tensors obtained for 10 different SVEs,
are presented in Figure 2. An isotropic permeability
𝐾𝐾 = 𝐾𝐾𝐼𝐼𝐼𝐼

3 and its standard error are shown since the
deviator components are small. This was controlled by
the ratio

𝜀𝜀 = ‖𝐾𝐾𝐼𝐼𝐼𝐼 − 𝐾𝐾𝐾𝐾𝐼𝐼𝐼𝐼 ‖𝐹𝐹

𝐾𝐾
, (35)

which ranged from 0.01 to 0.035, for all different 𝑘𝑘𝑡𝑡 and
ℓ
𝑑𝑑 combinations11. The results show that for increasing
ℓ parameter the solutions approach the limit established
by the uniform static BCs – the results obtained for
ℓ
𝑑𝑑 = 104 and ℓ

𝑑𝑑 = 105 are very close. Moreover, when

1 ‖∙‖𝐹𝐹 in equation (35) denotes Frobenius matrix norm.

Figure 2: Averaged apparent permeability 𝐾𝐾 relative to the inter-
phase filtration coefficient 𝑘𝑘𝑡𝑡, for different values of the ℓ

𝑑𝑑
ratio.

Standard error, shown on the error bars, never exceeds 4%.

increasing the 𝑘𝑘𝑡𝑡 value from 𝑘𝑘𝑚𝑚 to 𝑘𝑘𝑠𝑠, the macroscopic
permeability 𝐾𝐾 also increases, approximately from the
Hashin–Shtrikman (H–S) lower bound when 𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑚𝑚 to
the same bound when 𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑠𝑠. This coincidence between
the numerically obtained values and the H–S bound
is a bit surprising, but actually it should be expected,
since the H–S bounds are derived exactly for this kind
of microstructure, that is, for spherical inclusions in the
matrix surrounded by equivalent material. Thus, this
result can be treated as the confirmation of correctness
of the considered homogenization approach. In case of ℓ

𝑑𝑑

ratio equal to 103, the results are located above the H-S
lower bound. With further decrease of ℓ

𝑑𝑑 (increase of 𝜅𝜅),
the macroscopic 𝐾𝐾 would eventually approach the upper
H–S bound. This case is not considered here because of
the reasons mentioned before (but it is considered in the
next example).

As a final remark, let us note that when increasing
the interphase permeability beyond the permeability of
the expanded shale, the averaged 𝐾𝐾 starts to increase at
a faster rate (see the last points of the lines generated
with ℓ

𝑑𝑑 equal to 103 and 104). This cannot be explained
physically and is considered as the limitation of the
method. Namely, for increasing contrasts in material
constants, accompanied with high (or low) values of ℓ

parameter, the numerical errors related to the FEM
solution may become important. This problem needs an
attention and further investigations.
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Figure 3: Examples of random uniform distributions of soil com-
ponents in voxelized domain (yellow – Sa, green – Si, blue – Cl,
violet – water). On the left 173 voxels, on the right 653 voxels.

8 Example 2 – heat conduction
Stationary heat conduction equation is given by:

𝑞𝑞𝑇𝑇
𝑖𝑖𝑖𝑖𝑖 = 0, (36)

𝑞𝑞𝑇𝑇
𝑖𝑖 = −𝜆𝜆𝑖𝑖𝑖𝑖𝑇𝑇𝑖𝑖𝑖 , (37)

where 𝑞𝑞𝑇𝑇
𝑖𝑖 is a heat flux, 𝑇𝑇𝑖𝑖𝑖 is a temperature gradient,

and 𝜆𝜆𝑖𝑖𝑖𝑖 is a thermal conductivity tensor. The minus
sign signifies again that the problem is negatively de-
fined, that is, the heat flow direction is from higher to
lower temperature. Let us consider then a multiphase
soil and the following thermal conductivities attributed
to its components: for sand (Sa) 𝜆𝜆Sa = 8 W

m·K , for silt
(Si) 𝜆𝜆Si = 4 W

m·K , for clay (Cl) 𝜆𝜆Cl = 2 W
m·K , and for water

(w) 𝜆𝜆w = 0.6 W
m·K [17]. The volume fractions of the com-

ponents are taken as 𝑓𝑓Sa = 0.3, 𝑓𝑓Si = 0.15, 𝑓𝑓Cl = 0.25,
𝑓𝑓w = 0.3. The fully saturated soil is considered here and
also no water flux is assumed. SVEs for this material
are created using the randomly filled voxelized boxes
(Figure 3). The voxel size is assumed to be constant and
equal to 0.001 m. A number of sizes of SVEs containing
[93, 173, 333, 653, 1293] voxels has been considered. For
these sizes, a number of random material distributions –
SVE realizations – were generated, that is, [81, 27, 9, 3, 1],
respectively. Again, these numbers are somewhat arbi-
trary in this example, but the homogenization results
show that they are chosen reasonably. To investigate the
influence of ℓ parameter on the homogenization results, a
number of choices for ℓ

𝑑𝑑 ratio have also been considered,
namely [0.001, 0.01, 0.1, 1, 10, 100, 1000].

The same tools and devices as in the case of Darcy
flow example were used for solving this homogenization
problem. The only exception is that the finite elements
are now 8-noded hexahedra with linear shape functions,
which is a natural choice for the voxelized domains. The
results, that is, the averaged and isotropized macroscopic
conductivities Λ = Λ𝐼𝐼𝐼𝐼

3 obtained for all SVE sizes and

Figure 4: Averaged and isotropized macroscopic thermal con-
ductivity Λ relative to the ℓ

𝑑𝑑
ratio and for different SVE sizes.

Standard error, shown on the error bars, never exceeds 1.5%.

for different ℓ
𝑑𝑑 values are presented in Figure 4. The

isotropy of the resulting averages Λ𝐼𝐼𝐼𝐼 was tested using
the deviation measure defined by equation (35). For all
SVE sizes and ℓ

𝑑𝑑 choices, the value 𝜀𝜀 𝜀 0.01 was obtained.
One note that the standard errors visible in Figure 4
are decreasing with the SVE size. This justifies the de-
creasing number of SVEs being analyzed. All the results
fall, as expected, between the upper and lower bounds
given by the rule of mixtures, that is, 3.68 and 1.43 W

m·K ,
respectively (not shown in the figures for readability).
Moreover, the presented lines approach asymptotically,
from both sides, the limits which are identified as the
upper and lower bounds of the macroscopic conductivity,
obtained with uniform kinematic and uniform static BCs,
respectively. The distance between the limiting values is
relatively wide for small SVEs (0.35 W

m·K for 93 voxels)
and it becomes increasingly narrow as the size of the
SVE increases (up to 0.027 W

m·K for 1293 voxels). Even-
tually, the largest SVE used in this example could be
treated as a representative volume element (RVE) since
it provides homogenization results which are (almost)
independent on the kind of BCs applied. Another impor-
tant observation is that all lines in Figure 4 cross each
other at approximately the same point located at the
ℓ
𝑑𝑑 ratio, somewhere between 0.3 and 0.4. This suggests
that there exists such a value of this ratio, for which
the computed macroscopic conductivity is (almost) in-
dependent on the size of SVEs. In Figure 5, exactly
the same results are presented, but now, the horizontal
axis indicates the SVE size and the lines are plotted
for different ℓ

𝑑𝑑 ratios. The line for ℓ
𝑑𝑑 = 0.001 is indis-

tinguishable from the results which are obtained with
uniform kinematic BCs. Similarly, the line for ℓ

𝑑𝑑 = 1000
is equivalent to the line generated with uniform static



368    M. Wojciechowski
Application of generalized boundary conditions for homogenization of thermal and filtration properties of soils 7

Figure 5: Averaged and isotropized macroscopic thermal con-
ductivity Λ relative to the SVE size and for different ℓ

𝑑𝑑
ratios. In

addition, the results obtained with periodic BCs are presented.
Standard error, shown on the error bars, never exceeds 1.5%.

BCs. Other lines reside between these limits. Additional
computations performed for ℓ

𝑑𝑑 = 0.33 show that indeed,
the average macroscopic conductivity becomes almost
constant for this ratio (black line), so it does not depend
on the SVE size, at least for the sizes considered in this
example. For comparisons, the results generated with
periodic BCs have also been presented in Figure 5. These
results closely follow the ℓ

𝑑𝑑 = 1 line, with slightly higher
standard errors. However, this observation cannot be
taken as a general rule; rather, it applies to the specific
material composition considered in this example.

Summarizing this illustrative example, let us note
that the obtained macroscopic thermal conductivities
with values above 3 W

m·K are significantly higher than
usually observed in laboratory for sandy clays (or clayey
sands). This is because of the idealized material being an-
alyzed, where no air or organic matter with low thermal
conductivities is taken into account in the composition.
The results can also be influenced by the finite element
method accuracy, since the 8-noded hexahedra elements
with linear shape functions are known to provide overes-
timated results. Again, this problem will require further
investigations.

9 Conclusions
In this paper, generalized boundary conditions were used
for homogenization of coefficients of the Laplace’s PDE.
The mesoscopic BVP was defined and analyzed from the
variational perspective, and the finite element formula-
tion of the problem was provided. The matrix equation
for computing apparent properties, resulting from FEM

discretization, was also provided and utilized in two ex-
amples: homogenization of the filtration coefficient of the
clay amended with expanded shale and homogenization
of the thermal conductivity of the soil with multiple
fractions. It is shown that the computed macroscopic
properties are bounded by the uniform kinematic and
uniform static solutions. For the properly chosen micro-
scopic length parameter ℓ, the generalized BCs provide
reliable homogenization results, without the assumption
of periodicity of the material. Thus, the generalized BCs
offer an attractive unified homogenization framework for
analyzing random composites.

The main challenge when using generalized BCs is
the proper estimation of the ℓ parameter, which deter-
mines a value of the boundary transfer coefficient 𝜅𝜅, via
relation (18). As a rule of thumb, this parameter can of-
ten be identified to be close to the characteristic length of
the microscopic inhomogeneity. For example, assuming ℓ

equal to the voxel size 𝑑𝑑 in the second example gives ho-
mogenization results comparable to the results obtained
with periodic BCs. However, even better ℓ

𝑑𝑑 ratio, equal
to 0.33, has been identified in this example, for which
generalized BCs provide the same macroscopic thermal
conductivity, independently of the SVE size. On the
other hand, in case of matrix-inclusion microstructure
with high contrasts in parameters of the constituents
crossing SVE boundary, the limiting values of ℓ must be
used to obtain reliable homogenization results – as shown
and explained in the first example. So, it seems, there
is no simple answer to the question, what ℓ should be
actually used for the specific microstructure. One of the
possible solutions to this problem is implementation of
the self-consistent approach, where the boundary trans-
fer coefficient 𝜅𝜅 is a variable quantity depending on the
current apparent solution 𝐴𝐴𝐼𝐼𝐼𝐼 . System of equations (25)
will then become non-linear, but it should be still fast
and easy to be solved by means of iterative solvers with
simple Jacobi preconditioning. This topic is currently a
subject of the author’s investigations.
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