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Abstract: Accuracy and quality of recognizing soil 
properties are crucial for optimal building design and 
for ensuring safety in the construction and exploitation 
stages. This article proposes use of long short-term 
memory (LSTM) neural network to establish a correlation 
between Cone Penetration Test (CPTU) results, the soil 
type, and the soil liquidity index IL. LSTM artificial neural 
network belongs to the class of networks requiring deep 
machine learning and is qualitatively different from 
artificial neural networks of the multilayer perceptron 
type, which have long been widely used to interpret the 
results of geotechnical experiments. The article outlines 
the methodology of CPTU testing and laboratory testing of 
the liquidity index, as well as construction and preparation 
of data for the network. The proposed network achieved 
good results when considering a database consisting of the 
parameters of eight CPTU soundings, soil stratifications, 
and laboratory test results.

Keywords: geotechnical parameters; Cone Penetration 
Test (CPTU); liquidity index; Long Short-Term Memory 
(LSTM) neural network.

1  Introduction
Ground investigations play a crucial role in the process of 
designing and constructing safe and durable structures 
such as buildings, bridges, roads, and other infrastructure 

elements. Knowledge of the ground conditions allows for 
the assessment of the interaction between the foundations 
and the soil, enabling the designer to adopt the optimal 
structural solution. Knowledge of the ground conditions 
is also necessary during the construction phase of the 
object, as it enables the prediction and prevention of 
adverse phenomena that may occur in the soil, such as 
excessive settling, landslides, or liquefaction. Preventing 
these phenomena ensures the safety and efficiency of the 
work being carried out.

Soil is a complex engineering material that has 
been formed by a combination of various geological, 
environmental, and physicochemical processes 
[5]. As a result of these processes, the soil exhibits 
anisotropic, nonhomogeneous geotechnical properties, 
which additionally change with depths and over time. 
Complexity of the soil structure makes recognition 
of ground conditions a complicated task. Obtaining 
information about the soil is carried out by conducting 
tests in both field and laboratory. Currently, one of the most 
commonly performed field tests is the Cone Penetration 
Test (CPTU). Geotechnical experiments usually measure 
physical quantities that are possibly well correlated with 
the values of geotechnical soil parameters needed in the 
design process. This is also the case with the CPTU test. 
Here, the measured physical quantities are: resistance on 
the cone, the value of the pore pressure in the cone filter 
and the friction on the side of the sleeve located above 
the cone. These data depend not only on the type of soil, 
but also on the location of tested points at which the cone 
registers the data during its movement into the ground. 
There are numerous techniques that allow to correlate 
the values of these measured quantities with the values 
of geotechnical parameters, such as oedometric modules, 
cohesion, angle of internal friction, and many others 
needed in the design of the foundation, but they provide 
underfitted results or the ones that are fitted only locally. 
Correlations can be established through approximations 
made using mathematical functions and another method 

*Corresponding author: Mateusz Jocz, student at Interdisciplinary 
Doctoral School, Lodz University of Technology, Żeromskiego 116, 
90-924 Łódź; Division of Geotechnics and Engineering Structures 
Department of Concrete Structures Lodz University of Technology, Al. 
Politechniki 6, 90-924 Łódź, E-mail: mateusz.jocz@dokt.p.lodz.pl 
Marek Lefik, Division of Geotechnics and Engineering Structures 
Department of Concrete Structures Lodz University of Technology, 
Al. Politechniki 6, 90-924 Łódź

 Open Access. © 2023 Mateusz Jocz, Marek Lefik, published by Sciendo.  This work is licensed under the Creative Commons
Attribution alone 4.0 License.



406    Mateusz Jocz, Marek Lefik

involving graphical and tabular interpretations. The 
article proposes an approximation method using artificial 
neural networks (ANNs), which has the advantage of 
incorporating all measurements recorded by the CPTU 
probe, as well as other additional information such as 
soil type. ANN functionalities are well suited to solve the 
problem of establishing a complex relationship of many 
variables, which cannot be written in a simple way. In 
this article, using an ANN, based on the measurement 
data obtained as a result of the use of CPTU, we determine 
the type of soil and its state characterized by the liquidity 
index IL. The choice of parameters is justified mainly by 
the fact that the appropriate amount of data needed to 
establish the correlations has been collected for them.

The ANN we adopt here is known as the Long Short-
Term Memory (LSTM) neural network (for more about 
LSTM, see [10], [11], [19]). It is an ANN that is qualitatively 
different from that usually used in geotechnical 
applications layered networks trained using the error 
back propagation method (multilayer perceptrons 
[MLPs]). Instead of the input and output layers in MLP, 
associated with the input data and their image at the 
output of the network, in the LSTM network, an input data 
stream is distinguished, which, after applying one of the 
deep learning algorithms, is transformed into an output 
data stream. Each element of the output stream depends 
both on the value of the corresponding element of the 
input stream, as well as on the values of parameters in its 
narrow or wide neighborhood. The input sequence here is 
a sequence of pressure values on the measuring cone and 
friction on the measuring sleeve at each of the successive 
cone penetration depths. The output stream is the value 
of the liquidity index and the number assigned to the 
type of soil in this point of the ground. The LSTM network 
is usually used for automatic text translation. In our 
approach, a well-trained LSTM network “translates” the 
sequence of triples of measured values into the sequences 
interpreted as the value of the liquidity index and the type 
of soil at corresponding depths.

The paper is organized as follows: in the second 
section, LSTM network is shortly characterized; in the 
third section, we describe the process of experimental data 
acquisition; in the fourth section, the data preparation 
procedure is explained. The fifth section presents the 
application of the LSTM network to calculate the liquidity 
index and to determine the type of soil, based on the CPTU 
probe tests. The work ends with conclusions summarizing 
the presented method of interpretation of measurement 
data.

2  LSTM network
ANN is a computational tool that is part of a field of 
computer science called machine learning. ANN works 
in an algorithmic way on the database which contains 
a description of a physical phenomenon at hand. The 
database splits into two sets: input data and output data, 
related to the input data by the relationships usually not 
known. The result of an ANN’s activity is a multivariate 
approximation function that approximates this unknown 
relation and is able to predict new output for any newly 
entered input. It is to be highlighted that ANN itself 
discovers the dependencies between the input and output 
data during the learning process (shaping of the internal 
parameters – weights and biases) in training. ANNs with 
the structure of an MLP have been used in geotechnics 
for more than 30 years. A review of various applications 
of MLP in geotechnics can be found in [1]. The success 
of this neural network is based on the fact that it is a 
very good approximator of a function or an operator. 
The best approximation of the values of this functional 
relation can be found by training based on examples of 
approximate functional dependence (see [2]). In [4], CPTU 
test parameters with auxiliary data were used to detect 
engineering parameters, for example, overconsolidation 
ratio (OCR), Ko, M, cu. In [9], CPTU soundings data were 
used to predict OCR. In this paper, Sulewska used 
neural networks also for the determination of potential 
soil liquefaction, prediction of foundation settlement, 
evaluation of bearing capacity of piles, prediction of 
compaction parameters for cohesive soil, and compaction 
control of embankments built of noncohesive soils. 
Some examples of ANN applications in geotechnics can 
be found in [12], [16], [18], and [20]. In these works, as 
in most geotechnical applications, ANNs are used as a 
tool for discovering and recording various constitutive 
relationships formulated in frame of the mechanics of 
fragmented media. 

Unfortunately, a classical ANN MPL cannot be used 
for interpretation of continuous series of measured data 
coming from CPTU or similar devices, since it cannot 
interpret sequences of the data with variable length, for 
which the order of the data is important. Moreover, for 
interpretation of the current measurement point, the 
input data far from it should be less important than the 
data taken from its close neighborhood.

One of the solutions that is not susceptible to the 
above limitations is the LSTM network, first presented in 
[10]. LSTM is a recurrent ANN characterized by the ability 
to find patterns in the input sequence of data, commonly 
used for analysis of long sequences of data, in particular, 
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in automatic translation of one sequence of data into 
another data sequence (sequence2sequence problems). 
The most common application of LSTM ANN is translating 
of a string of words in one language into a string of words 
in another language. LSTM simply replaces the words in 
one language with the words that appeared in the given 
context in the training pattern – a set of examples of 
correct translations furnished in the training process. In 
the application proposed in this paper, the first string (the 
input string) is the sequence of pairs of data registered by 
CPTU: resistance pressure under the cone and friction on 
the sleeve on each consecutive depth. The output sequence 
(result of the “translation”) is the number identifying the 
soil type and the value of liquidity index IL.

The activity of the LSTM network is assured by three 
internal subnets of simple structure of sigmoid layers. 
The first subnetwork has to decide what information we 
are going to throw away from the current cell state. This 
sigmoid layer is called the “forget gate layer.” The next 
sigmoid layer has to decide what new information we 
are going to store in the cell state. This sigmoid layer, 
called the “input gate layer,” decides which values will 
be updated. Finally, we need to decide what we are going 
to output. This output will be based on the current cell 
state, which is influenced by the short and long memory 
states of the previous elements of the sequence. The third 
sigmoid layer decides which parts of the cell state we are 
going to output. This process is corrected by comparison 
of the current output value with the needed target value 
in the process of training. The weights and biases of the 
sigmoid layers are changed according to this error by an 
assumed minimization procedure.

Architecture of LSTM type networks, significance, and 
selection of hyperparameters such as batch size, learning 
rate, type of neurons activation functions, number of 
neurons and layers, and number of epochs are described 
in [15] and [19]. The interested reader will find there some 
other references for works with varying levels of detail, 
theoretical or related to different practical applications 
of LSTM. Detailed analysis of the structure and actions 
of LSTM can also be found in many internet pages, for 
example, [11]. To our knowledge, this kind of ANN has not 
been applied yet in geotechnical problems.

The advantage of LSTM is that it takes into account 
the time factor. This means that the network, when 
performing computational operations on current data, 
takes into account the state from the previous step. The 
network thus understands the data as a sequence, where 
order matters.

In LSTM networks, an important advantage is that the 
problem of vanishing and exponential gradients has been 

eliminated. The problem is that during backpropagation, 
that is, in the network learning process, fixed weights 
between neurons may become practically insensitive to 
change or their values may start to grow exponentially. 
The expiration of network weight changes results in the 
fact that a given computational step will be forgotten and 
will not affect the later one (this applies to longer-input 
sequences). To overcome this problem, LSTM networks 
use a gating system called long-term memory that has 
been described roughly above in this section.

3  In situ and laboratory data 
acquisition methodology
Static CPTU probing involves pushing a cone into the 
ground (Figure 1) under the influence of machine pressure 
at a constant speed (approximately 2 cm/s). During the 
test, information about the resistance on the cone qc, and 
the sleeve friction fs, is transmitted to the computer. The 
probe also has a sensor for the pore water pressure in the 
soil u2. Basic parameters such as qc, fs, and u2 are recorded 
from the surface every 1 cm to the planned depth of the 
sounding, which typically ranges from 3 to 20 m.

The widespread use of CPTU testing in geotechnics 
is due to the advantages that this method provides 
compared to other field tests. Thanks to the mechanized 
system of cone penetration and automatic data recording, 
CPTU probing has high accuracy of measured data and is 
practically immune to errors arising from the operator’s 

Figure 1: CPTU probe test scheme.
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work. The test is conducted in situ and it directly tests the 
ground in the place where the building will be founded. 
The CPTU test has a continuous character, in contrast to 
the point data obtained from laboratory tests of single 
samples. The advantage of CPTU probing is also its 
relatively short time and low cost.

For the purposes of the presented research, the CPTU 
test was associated with execution of control geological 
drillings (control geological drillings are often used in 
practice, in parallel with the CPTU test). A geologist 
distinguishes layers of soil and recognizes the type of soil 
in each of them. This field investigation was completed 
by laboratory tests for Atterberg limits, moisture content, 
sieve and oedometer analysis.

The liquidity index is calculated based on laboratory 
testing of cohesive soil samples taken from the boreholes. 
It is a dimensionless parameter computed according to the 
well-known equation (1):

n P
L

L P

w wI
w w

−=
−

(1)

Determination of liquidity index was performed with 
the same method, in the same laboratory, by two 
different researchers, under constant conditions, on the 
same equipment. Liquidity limit was determined using 
Casagrande apparatus. The change of the operator had no 
effect on the variability of the results (the same statistical 
dispersion for both operators).

4  Preparation of data
On the designated area, eight CPTU tests were carried 
out with an average distance of 50 m between them. The 
depth of sounding ranged from 5.4 to 17.5 m. At a distance 
of approximately 2 m from each sounding, a geotechnical 
borehole was drilled to determine the layers of the soil and 
to obtain samples for laboratory testing. For each layer, 
5–13 samples were taken and their liquidity index was 
tested. The assumed IL value for the layer is the arithmetic 
mean of the results. The test results for one of the research 
points are shown in Figure 2.

As shown in Figure 2e, the liquidity index graph is 
constant within the designated geotechnical layer. This 
is insufficient to build a neural network and inconsistent 
with engineering intuition. The liquidity index has 
varying values within the layer. To obtain appropriate 
data, several assumptions had to be made.

The proposed correlations between the liquidity 
index and the probing results, including the normative 
correlation [6], are a function of the cone resistance and 
the type of soil IL = f(qc, ground type). The relationship is 
inversely proportional to cone resistance. The lower the qc 
value, the higher the liquidity index. This first assumption 
is commonly seen in the classical literature, for example, 
in [3] or in [8]. 

The second assumption involves the statistical data 
from laboratory elaboration of CPTU results. The average 
coefficient of variation for determining the liquidity index 
for all layers was VILav=0,093 (Equation 2) 

𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ∑ 𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛
𝐼𝐼𝐼𝐼
𝑛𝑛𝑛𝑛

       (2) (2)

where 𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
𝜎𝜎𝜎𝜎𝐼𝐼𝐼𝐼
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿

  is a coefficient of variability in the layer, 

iσ  stands for standard deviation in the ith layer, and ILavl is 
an average liquidity index in the layer.

The average coefficient of variation for cone resistance 
qc assigned to the same layers is significantly higher and 
equals Vqcav=0.1459.

The assumption was made that within the layer, the 
liquidity index changes proportionally to the coefficient of 
variation of a single measurement of the cone resistance 
𝑉𝑉𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼 =

𝜎𝜎𝜎𝜎𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

  relative to the average coefficient of 
variation Vqcav=0.1459  (description of this proportionallity 
is 𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∙ 𝑉𝑉𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼𝑉𝑉𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

),  but no more than the average coefficient of 
variation of the liquidity index VILav=0.093. Due to the 
occurrence of point peaks in qc values within the layer 
and its greater variability than IL, this approach prevents 
assigning a single qci value of the liquidity index ILi, 
which is not physically possible. This also means that for 
qci values that differ significantly from the average, the 
value of IL has a constant character. This relationship is 
expressed below:

 
�
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ≥ 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞 = 𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(1− 𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞); 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(1 −

𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼∙𝑉𝑉𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼
𝑉𝑉𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

)]

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 < 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞   𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞 = 𝑚𝑚𝑚𝑚𝑞𝑞𝑞𝑞𝑚𝑚𝑚𝑚[𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(1 + 𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞); 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(1 +
𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼∙𝑉𝑉𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼
𝑉𝑉𝑉𝑉𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

)]
  (3) (3)

where: ILavl - average liquidity index for the layer; qcavl - 
average cone resistance for the layer.

The above relationship was applied to the results of 
all eight field research points. Finally, the liquidity index 
charts were transformed, as seen in the example shown 
in Figure 3.

The transformation procedure was performed for all 
research points. 
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Figure 2: An example of a research point consisting of: a) a cross section of the borehole, where Sa – sand, Si – silt, Cl – clay, Mg – made 
ground, Gr – gravel; b–d) graphs of the basic parameters of CPTU probing, such as qc, fs, and u2; e) a graph of the calculated laboratory 
values of the liquidity index IL for the selected layers.
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5  Application of the LSTM network 
for interpretation of in situ 
geotechnical measurements

5.1  Prediction of values of liquidity index

As a tool for establishing the correlation between IL and 
CPTU test results, a LSTM neural network was adopted 
using the PyTorch environment. It provided better results 
than a simpler perceptron network. The data used to build 
the network were the results of eight CPTU tests, the types 
of layers determined within the tests, and eight liquidity 
index charts determined according to the model in the 
previous section. The highest accuracy of the network 
was achieved by taking the basic CPTU test parameters  

x1i = qci, x2i = fsi, and x3i = zi (depth) as input data, along with 
the recognized type of cohesive soil x4i = ri, which was 
classified according to Table 1 (categories 4, 5, and 6). The 
output value of the network is the liquidity index ILi. 

The results of the eight research points were combined 
while maintaining the order of CPTU measurements 
according to the depth of the test. The designed network 
consists of 5297 sets of input and output data. Of these, 
4500 initial sets were chosen for network training and 
the remaining sets were used for testing the network. 
The network was trained until the mean squared error 
of predicted values relative to the output data reached 
the lowest value. Mean Square Error (MSE) of the result 
obtained was 0.00156.

Figure 4 shows the results of the designed LSTM 
network. The green dashed line represents the beginning 
of the data used for testing the network. The red dashed 
line represents the introduced output data - the liquidity 
index, and the blue dashed line represents the results 
of the trained network. Small oscillations of predicted 
values are natural because there are often interlayers or 
admixtures of other soils that differ from the parameters 
of the determined layer in the soil. 

5.2  Comparison of obtained results with 
existing correlations

Below, we present a preliminary comparison of the 
prediction obtained using LSTM ANN with the one resulting 
from correlation proposed by the standard document PN-B-
04452:2002. The blue line on the graph represents the 
laboratory results. It can be seen that the prediction results 
are better than those proposed in the standard document 
PN-B-04452:2002 given by the equation

IL=0.581-0653logqc (4)

Figure 3: Liquidity index IL before (green line) and after (orange line) 
transformation for the example research point. 

Table 1: Division of soil types into categories.

Soil types Symbol Category

Made ground Mg 1

Fine sand FSa 2

Medium sand MSa 3

Glacial till siSa, clSa, sasiCl 4

Settled deposits clSi, saSi, Si, 5

Settled deposits with gravel grsaSi, grclSi 6

Gravel Gr 7
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Figure 4: Results of identification of liquidity index with the developed LSTM network in comparison with known values of the liquidity index. 
Explanation in the text. 
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(for soils with fraction of clays fi=10%-30%, but only such 
soils appear in all probing).

The prediction accuracy of designed LSTM is similar 
for the remaining profiles. It is presented in Figure 4. 

5.3  Identification of the soil type

The basic parameters x1i = qti, x2i = fsi i x3i = zi, which were 
the results of the eight CPTU tests, were adopted as input 
values for designed LSTM network, while the output 
values were the soil type recognized in parallel boreholes 
(Figure 5). The soil type was divided into categories 
according to Table 1.

The designed LSTM network consists of 8060 input 
and output data sets. For network training, 6200 initial 
sets were selected, while the remaining sets were used for 
testing the network. The data were entered chronologically 
to borehole profiles. Figure 6 shows the results of the 
designed LSTM network. The mean squared error of 

predicted values relative to the output data reached MSE 
= 0.0104. 

Network has difficulty in recognizing some layers, but 
it eventually assigns a similar type of soil, as, for example, 
in the third borehole, where gravels at a depth of 5.7 m were 
classified as medium sands. In some points, the network 
assigns a non-integer number, but rounding these values 
results in a well-predicted layer. Minor oscillations in 
the predicted values may result from naturally occurring 
small geological differences within the layers.

6  Conclusions
Two classical LSTM recurrent ANNs have been created to 
interpret the results of CPTU. The first one has been trained 
to establish the correlations between the recognized type 
of cohesive soil, measured pressure at the cone, and 
friction on the sleeve for consecutive depths (ri, qc, fs, and 

Figure 5: Comparison of the obtained results with the correlation proposed by PN-B-04452:2002 and with laboratory results transformed by 
Equation 3 for profile number 7.
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Figure 5: Borehole profiles.
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z), with the liquidity index IL. The second one is intended 
to recognize the soil type having as the input the same 
triple of data issued from cone probe (qc, fs, and z). The 
network has been trained using the data collected by the 
first author from his own field investigations. 

We believe that the choice of the LSTM type network 
is appropriate for the interpretation of measurement 
data strings obtained as a result of probing with the 
CPTU probe, because during the training phase, the 
network takes into account the “context” of each single 
measurement. Therefore, the results of the interpretation 
show the correct division of the ground area into layers 
with similar properties. The use of the LSTM type neural 
network, qualitatively different from the MLP type ANN, 

is an element of novelty in the application of ANNs in 
geotechnics. We observe that the quality of correlation 
modeled in the LSTM network is good. The final results 
perform well when considering the database consisting 
of the parameters of eight CPTU tests and laboratory test 
results. The accuracy of the network can be improved by 
increasing the set of input and output data. The LSTM 
network trained with results of a representative number of 
surveys will allow for a quick interpretation of the survey 
results, obtained immediately after completion of the 
probing.

The use of a transformation equation (Equation 3) for 
the output data of the LSTM network (liquidity index), 
which is intended to attempt to reproduce the natural 

Figure 6: Results of identification of soil type with the developed LSTM network (predicted data) in comparison with known borehole 
profiles (actual data). The profile includes the following data numbers: profile 1 (0–540), profile 2 (540–2115), profile 3 (2115–2837), profile 
4 (2837–3547), profile 5 (3547–4600), profile 6 (4600–5318), profile 7 (5318–6304), profile 8 (6304–8060).
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variability of a geotechnical parameter in the soil, resulted 
in an improvement in the effectiveness of the network by 
20% compared to the same output data, but without their 
transformation (constant liquidity index in the layer).

It should be mentioned that, apart from the selection 
of input data, the adopted network architecture also has 
a significant impact on the quality of network prediction. 
Because this is a complicated IT issue, it was discussed 
only superficially in the article.

We are sure that the idea of application of LSTM type 
ANN is promising in solving many other engineering 
problems in geotechnics. 
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