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Abstract: This study evaluates various methods for 
estimating soil permeability using microtomography-
derived data and compares them to the conventional 
laboratory approaches. Different methods, including 
measurement in custom-designed permeameter at micro-
CT-compatible scale, empirical equations, simulated 
sifting, semi-theoretical equations, pore-network 
modeling, and lattice-Boltzmann simulations, were applied 
to samples of sandy soils with distinct microstructural 
properties. The empirical equations showed varied 
results, highly dependent on the method chosen. The 
simulated sifting method was able to adequately estimate 
the granulometric properties of the soil, allowing the use 
of empirical permeability formulations for substantially 
small samples. Semi-theoretical equations based on 
the microstructural properties presented reasonable 
agreement for some samples. The pore-network modeling 
approach demonstrated computational efficiency but 
lacked accuracy. The lattice-Boltzmann method required 
significant computational resources but did not provide 
substantially closer alignment with the measured hydraulic 
properties of some samples. None of the simulations was 
able to properly determine the permeability of silty and 
organically contaminated sand. The study highlights 
the complexity of permeability estimation, emphasizing 
the need for choosing volumes of interest, resolution of 
micro-CT scans, and methods that match specific soil 
characteristics and available computational resources.

Keywords: microtomography; permeability; 
conductivity; computational fluid dynamics; Kozeny–
Carman equation

1  Introduction
Permeability of soil is considered an important parameter 
in many fields of geotechnical and hydrotechnical 
engineering. Due to its governing role in flow through 
porous media, its value is of interest in groundwater 
analysis, well engineering, material engineering, 
and fossil fuel industry. The most common form of 
mathematical definition of permeability is associated 
with Darcy’s equation (Verruijt, 1970):

𝑄𝑄𝑄𝑄 = 𝑘𝑘𝑘𝑘
𝐴𝐴𝐴𝐴
𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇

⋅ Δ𝑝𝑝𝑝𝑝 (1)

where Q is the discharge rate [m3/s], k is the absolute 
permeability [m2], A is the cross-sectional area of the 
porous medium [m2], μ is the dynamic viscosity [Pa·s], L is 
the length of the medium [m], and Δp is the difference in 
pressure between the inlet and outlet of the medium. The 
above relation applies only to laminar viscous flow at low 
Reynolds numbers. 

In groundwater engineering, assuming the viscosity 
of the fluid and its temperature constant, hydraulic 
conductivity can be defined as follows:

𝐾𝐾𝐾𝐾 =
𝑘𝑘𝑘𝑘 ∙ 𝑔𝑔𝑔𝑔
𝜈𝜈𝜈𝜈

 (2)

where K is the hydraulic conductivity [m/s], k is the 
absolute permeability [m2], g is the gravitational 
acceleration [m/s2], and ν is the kinematic viscosity [m2/s]. 

Flow in porous medium is highly dependent on 
its microstructural properties, jointly included in 
permeability coefficient as in Eq. (1). It can be acquired by 
laboratory measurements, tabularized values, correlations 
with some easy to measure parameters, theoretical 
microstructure-level models, and direct numerical flow 
simulations based on identified real microstructure of 
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the medium. Several empirical and semi-theoretical 
equations have been developed in attempts to correlate 
permeability with grain diameter distribution, porosity, 
compaction factor, specific surface area, and other 
factors. Some notable examples of empirical formulae are 
those developed by Hazen (1911), Seelheim (1880), USBR, 
and Terzaghi (1964), which assume that the flow is mostly 
dependent on the finest particles in soil composition. 
Despite their abundant usage, several researchers have 
found that, in general, this approach may provide mixed 
results, providing reasonable estimation for some types 
of soil and significant misestimation for other (Hussain & 
Nabi, 2016; Pap & Mahler, 2018; Živković et al., 2021). 

An alternative approach is adopted in the equations 
of Kozeny (1927) and Carman (1937, 1956), where the soil 
is substituted with an equivalent medium that reflects 
its microstructural properties. However, a significant 
challenge in applying the above equations lies in the need 
for accurate estimation of tortuosity and specific surface 
area, which are not easily obtainable and pose substantial 
difficulty in  acquiring their credible values. In practical 
applications, these microstructural characteristics have 
typically been estimated based on empirical assumptions, 
statistical techniques, or laboratory assessments. Until 
recently, these parameters made the employing of 
Kozeny–Carman equations challenging for reliable use in 
real-world scenarios.

Recent developments in micro-computerized 
tomography (micro-CT) have revolutionized 
characterization of porous materials by providing 
detailed insight into their internal structure, which 
intrinsically determines their hydraulic properties. 
This information may be used in two distinct ways: to 
calculate microstructural properties for use in semi-
theoretical permeability estimation methods or to 
directly simulate fluid flow through the reconstructed 
medium. Several numerical methods are used to calculate 
permeability by means of computational fluid dynamics. 
In the pore-network modeling approach, the geometry 
of the medium is commonly simplified into a set of one-
dimensional elements either by medial axis (Lindquist & 
Venkatarangan, 1999) or by maximal ball methods (Dong 
& Blunt, 2009). The direct modeling approach utilizes flow 
calculation directly in the voxel domain or meshed voxel 
domain. The most common method of direct simulation is 
the lattice-Boltzmann method (Frisch et al., 1986).

Nevertheless, the use of modern methods of 
microstructural characterization is not limited to micro-
CT-based approaches. A variety of pore-space imaging 
techniques are currently available, including, but not 
limited to, focused ion beams (sequential SEM imaging) 

(Blunt et al., 2013), statistical reconstruction based on 
2D images of pore-space (Feng et al., 2018; Valsecchi 
et al., 2020) based on either SEM or optical microscopy, 
or 14C PMMA impregnation (Kelokaski et al., 2006). 
These provide a worthy alternative to X-ray tomography, 
especially beyond the limits of its optimal feature sizes. 

The field of soil permeability estimation offers a wide 
choice of methods, each adopting different assumptions 
and having its own limitations, while their effectiveness 
and implementation complexity may vary significantly. 
Despite the increasing use of micro-CT-based approaches, 
the proper choice of method for estimation of permeability 
as an effective alternative for commonly used laboratory 
measurements remains not trivial. In this paper, various 
methods of estimating soil permeability based on the data 
retrieved from micro-tomography are evaluated and their 
outcomes are compared. Their performance is assessed 
for three samples of different sandy soils. 

The arrangement of the paper is as follows. In 
the second section, information on  samples and their 
properties and description of utilized methods is provided. 
Third section contains results of samples reconstruction 
and calculation of permeability using different techniques 
of its estimation. In fourth section, results are discussed 
and the performance of used approaches is compared. In 
the last section, the conclusions and discussion of further 
research directions in this topic are presented.

2  Materials and Methods

2.1  Test Samples

The selected soil samples represent three distinctive 
types of sandy soils. Sample 1, identified as fine sand, 
exhibits a uniform grain size distribution, sample 2 was 
characterized as fine sand with traces of lignite, while 
sample 3 was classified as medium sand, demonstrating 
a less uniform grain size distribution. The samples were 
first subjected to macroscopic analysis, measurements of 
grain size distribution, bulk density, and specific density 
and falling-head permeability test in oedometer; the latter 
performed in accordance with the procedure described 
in EN ISO 17892-11:2019-05. These preliminary laboratory 
measurements were treated as reference data for this study. 
All soils were air-dried and in loose state of compaction. 
The following table summarizes the measured properties 
of each sample.
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The grain size distribution analysis was conducted 
according to polish standard PN-EN 933-1:2012. Its results 
are provided in Figure 1.

2.2  Microcomputerized tomography

In order to acquire microstructure data for analysis, 
samples were scanned in Bruker Skyscan 1172 system, 
which consisted of a conical X-ray source with a maximum 
power of 10 W and 11 MPx CCD image sensor. The first 
general scan of the whole sample was conducted to 

accurately measure the length of the soil specimen for 
permeameter test, utilizing 1 MPx sensor configuration 
and oversize scanning function. The second scan, utilizing 
4 MPx sensor, was to provide microstructure geometry 
data for further analyses. 

3D reconstructions were performed with the NRecon 
software, which uses Feldkamp algorithm (Feldkamp et 
al., 1984). Smoothing, misalignment compensation, beam 
hardening, and ring artifact corrections were further 
performed to enhance the quality of the reconstructed 
images. Acquisition and reconstruction parameters were 
as follows:

Table 1: Measured properties of the samples.

Sample no. Sample name Soil type 
according to 
PN-EN ISO 
14688-
2:2018

Bulk 
density

Specific 
density

Porosity 
in loose 
state

Hydraulic 
conductivity in 
falling-head 
test at 10°C

Uniformity 
coefficient 
U=d60/d10

GSD curve slope 
coefficient 
C=d30

2/(d60·d10)

[-] ρ [g/cm3] ρs [g/cm3] φ [-] K [m/s] U [-] C [-]

1 Fine sand FSa 1.549 2.634 0.412 1.702E-5 1.840 1.054

2 Fine sand with 
lignite

FSa 1.238 2.644 0.532 3.189E-6 2.532 1.027

3 Medium sand MSa 1.652 2.654 0.377 4.067E-5 3.147 1.003

Figure 1: Grain size distribution curves of analyzed samples.
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 – Resolution: 7.8492 μm/px
 – X-ray tube voltage: 80 kV
 – X-ray tube current: 126 μA
 – Filter: Al 0.5 mm
 – Angular step: 0.24°
 – Smoothing: 1
 – Ring correction: 10
 – Beam hardening: 30%

2.3  Laboratory approach using the small-
scale permeability measurement apparatus

When compared between testing of soil permeability 
in a falling-head test in oedometer and micro-CT-based 
imaging methods, a significant challenge arises due to 
the difference in size of the samples. The inner diameter 
of the oedometer fixture used in the measurement (50 
mm) is significantly larger than the diameter of the 
sample reconstructed in microtomography (10 mm). The 
scale effect may lead to problematic interpretation of 
the resulting permeability values, as the volume of the 
scanned sample may not be representative in dimensions 
of the sample in oedometer, and thus, the comparison of 
both approaches is of questionable validity. To address 
this challenge and overcome scale discrepancy, a custom 
unsteady-state permeameter was developed, which is 
capable of measuring the conductivity of the exact same 
sample as the one reconstructed in terms of micro-CT. 

The core component of this system is a permeameter 
fixture fabricated using a 3D printing technology. It 
features a sample holder 10 mm in diameter, as well as 
inlet and outlet filters. Corrugated wall is incorporated to 
minimize the influence of boundary flow during testing. 
Accurate water-level measurement is achieved with the 
help of custom-made laboratory setup and the use of the 
computer vision (OpenCV 4.6.0., n.d.).

During testing, multiple soil samples are measured 
simultaneously. The water level as a  function of time is 
later used to fit a theoretical flow curve as in Eq. (3):

𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡) = 𝐻𝐻𝐻𝐻0 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑝𝑝(−𝐾𝐾𝐾𝐾 ⋅
𝐴𝐴𝐴𝐴
𝑎𝑎𝑎𝑎 ⋅ 𝜇𝜇𝜇𝜇

⋅ (𝑡𝑡𝑡𝑡 − 𝑡𝑡𝑡𝑡0) ) (3)

where H(t) is a hydraulic height as a function of time [m], 
H0 is the hydraulic height during the start of the test [m], 
A is a sample cross-sectional area [m2], a is an inlet pipe 
cross-sectional area [m2], L is the sample length [m], and 
t0 is a parameter accounting for starting time of the test [s]. 

Figure 2: Setup for measurement.

Figure 3: Permeameter fixture.
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Hydraulic height at the start of the test may be 
adjusted using a regulated outlet overflow. To account for 
the resistance induced by the apparatus itself, resulting 
hydraulic conductivity is corrected by the conductivity of 
permeameter without the soil sample. Measuring setup 
and permeameter fixture schematic are presented in 
Figures 2 and 3.

2.4  Empirical methods

In the study, despite their widely known limitations, 
results of several empirical methods were compared 
to bridge the gap between commonly used laboratory 
approaches and micro-CT-based methods. As put together 
by Vukovic & Soro (1992) and reported by Říha et al. 
(2018), those equations may be presented in standardized 
forms (Eq. 4, 5):

𝐾𝐾𝐾𝐾 =
𝑔𝑔𝑔𝑔
𝜈𝜈𝜈𝜈
∙ 𝐶𝐶𝐶𝐶 ∙ 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑) ∙ (𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)𝑚𝑚𝑚𝑚 (4)

𝐾𝐾𝐾𝐾 = 𝐶𝐶𝐶𝐶′ ∙ 𝑓𝑓𝑓𝑓(𝜑𝜑𝜑𝜑) ∙ (𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒)𝑚𝑚𝑚𝑚 (5)

where K is the hydraulic conductivity [m/s], g is the 
gravitational acceleration [m/s2]; C, C’, and exponent m 
are unitless coefficients, f(φ) is a porosity function, and 
de is an effective grain diameter. Values of C, f(φ), m and 
percentile of grain size used as an effective diameter 
differ between methods. The equations used, values of 
coefficients, and applicability conditions are presented in 
Table 2.

2.5  Methods utilizing microstructure 
reconstruction in micro-tomography

2.5.1  Simulated sifting method

Accurate results of granulometric analysis play a pivotal 
role in comprehending the flow characteristics within 
soil. However, in scenarios where the quantity of soil 
available for testing is limited or only micro-CT retrieved 
data are accessible, conventional application of grain 
size distribution (GSD) measurement faces a  significant 
challenge. In this study, we present a workflow designed 
to emulate the sieving process through image analysis, 
allowing for a comparable approach to laboratory tests. 

The CT-acquired data were initially subjected to 
denoising using a nonlocal means filter. Subsequently, 
threshold values were calculated for each slice of the 
sample using Otsu’s method, and the averaged threshold 
was used to binarize the entire dataset. The porosity of 
the resultant binarized arrays was cross-compared with 
laboratory-obtained porosity values to ensure proper 
choice of threshold values. 

These binarized data arrays were further segmented 
utilizing the SNOW algorithm (Gostick et al., 2019) to 
extract point cloud regions corresponding to grains 
within the analyzed samples. To determine the minimal 
dimension of the sieve mesh through which each grain 
could pass, the minimal bounding box (MBB) for each 
grain was computed. This bounding box essentially forms 
a cuboid that encloses the region occupied by the grain 
while minimizing its two smallest dimensions (Blott 
& Pye, 2007). This was accomplished by identifying a 
rotated coordinate system in which the variance of point 
coordinates along one axis is maximized. The second 

Table 2: Summary of used empirical formulae.

Method Equation 
form

Coefficient  
C or C’

Porosity function
f(φ)

Effective 
diameter de

Exponent 
m

Applicability

Seelheim (1880) (5) 3570 1 d50 2 Sands and clays

Hazen (1911) (4) 6.0E-4 1+10(φ-0.26) d10 2 0.1 mm<d10<3 mm* 
U<5

Sauerbrey (1932) (4) 3.75E-3 φ 3/(1-φ)2 d17 2 d17<5 mm

USBR (Říha et al., 2018) (4) 4.8E-4·(1000d20)0.3 1 d20 2 U<5

Beyer (1964) (4) 6E-4·log(500/U) 1 d10 2 0.06 mm<d10<0.6 mm
1<U<20

Chapuis et al. (2005) (5) 1219.9 φ 2.3475/(1-φ)1.565 d10 1.565 0.03 mm<d10<3 mm

*Due to this limitation, the Hazen equation was not considered valid for sample 2. 
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smallest dimension of that MBB was designated as the 
effective diameter of the grain.

For each chosen virtual sieve size, a weighted sum of 
grain volumes by intensity of centroid pixels within each 
region in the original dataset was calculated, yielding the 
simulated mass of all grains passing through each sieve. 
This resulted in obtaining grain size distribution curves 
similar to ones acquired in the laboratory analysis.

Those simulated curves were employed to calculate 
hydraulic conductivity in a  manner similar to that 
described in Section 2.4.

2.5.2  Semi-theoretical methods based on microstructure 
properties

In contrast to purely empirical permeability estimation, 
Kozeny–Carman equations offer deeper insight into flow 
characteristics as a consequence of soil microstructure. 
By combining Darcy’s law with the Hagen–Poiseuille 
equation, considering the soil as an arrangement of 
parallel capillary tubes with equal diameter (dt), while 
also incorporating the notion of tortuosity (τ) as a metric 
for flow pathway elongation within the porous medium, 
the Kozeny equation can be deduced as follows (Kaviany, 
1995): 

𝑘𝑘𝑘𝑘 =
𝜑𝜑𝜑𝜑 ∙ dt2

16𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
 (6)

Here, k [m2] represents the permeability of the medium, 
φ is the porosity, dt is the diameter of the single capillary 
[m], and kk is the Kozeny constant, which is equal to 
k0·τ2. k0 is often given as 2.5 for unconsolidated porous 
media (Wyllie & Rose, 1950). Introducing the concept of 
hydraulic diameter leads to the Kozeny–Carman equation, 
expressed as follows (Dullien, 1979):

𝑘𝑘𝑘𝑘 =
𝜑𝜑𝜑𝜑

16𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
∙ �

4𝜑𝜑𝜑𝜑
𝑆𝑆𝑆𝑆 ∙ (1− 𝜑𝜑𝜑𝜑)�

2

 (7)

where S denotes the specific surface area of the pore–
grain interface per unit volume [1/m].

The accuracy of the resulting permeability value 
significantly hinges on the accurate estimation of both 
tortuosity and specific surface area, which were computed 
numerically within the present study. The first parameter 
was determined using PyTrax toolkit (Tranter et al., 2019) 

based on random walkers method. This approach involves 
simulating the movement of virtual particles (walkers) 
that undergo random displacement steps within the pore 
space of the medium. A simulation of 20  000 walkers 
was conducted for 10  000 timesteps each. This led to 
obtaining mean squared displacements of all walkers for 
each sample. By comparing resulting values to the mean 
square displacement of walkers in an obstacle-free space, 
tortuosity of each dataset was determined. 

Each segmented region extracted by the segmentation 
algorithm described in the previous section was later 
used to calculate the specific surface area. Boundary 
points of each point cloud were used to mesh its surface 
with triangles. With the help of regionprops3d algorithm 
(Gostick et al., 2019), surface areas of individual grains 
were calculated, enabling the determination of specific 
surface area of the pore–grain interface per unit volume.

2.5.3  Pore-network model

The pore-network modeling (PNM) approach utilizes an 
analog of flow in porous medium to the current flow in a 
random resistor network, as first described by Fatt (1956). 
Generally, the Hagen–Poiseuille law is employed to 
calculate the  conductance of each one-dimensional 
capillary (throat) that connect nodes of the network 
(pores). This simplification of the computational domain 
allows for the calculation of the total flow rate under 
given boundary conditions by solving a system of ordinary 
differential equations, as opposed to directly solving the 
complex three-dimensional Navier–Stokes equations. The 
concept of the pore-network and its analogous electric 
form is shown in Figures 4 and 5.

The network was derived from binarized micro-CT-
acquired data using the SNOW2 algorithm (Gostick, 2017; 
Gostick et al., 2019) that encapsulates all the essential 
steps for generating the pore-network model compatible 
with the OpenPNM framework for the flow simulation 
(Gostick et al., 2016). Following this, the imported network 
underwent a preprocessing step, which consisted of 
assessing network integrity, trimming of the disconnected 
pores that did not contribute to fluid transport, and 
adding boundary pores at the inlet and outlet planes of 
samples. Utilizing constant pressure boundary conditions 
equivalent to a pressure difference of 10 Pa, the subsequent 
step involved simulating steady-state Stokes flow through 
the network. The results of the simulation were used to 
calculate permeability and conductivity using Darcy’s law.



Insights Into Estimation of Sand Permeability: From Empirical Relations to Microstructure-based Methods    7

2.5.4  Lattice-Boltzmann method

The lattice-Boltzmann method (LBM) models fluid particle 
behavior on a discrete lattice, providing an alternative 
approach to fluid flow simulation without directly 
solving Navier–Stokes equations. This method describes 
flow dynamics in  mesoscale, where simulated particle 
interactions and collisions drive its macroscopic behavior. 
In contrast to other particle-based methods, LBM places 
emphasis on monitoring velocity distribution functions 
at nodes instead of tracking individual particle velocities. 
By evolving these distribution functions in discrete time 
steps, LBM simulates the collective behavior of particles 

on a lattice grid, capturing macroscopic fluid flow 
dynamics. The 3D LBM solver used in this study (Yang et 
al., 2022) implements a common model of 19 velocities at 
each node, often called D3Q19 and multiple-relaxation-
time (MRT) scheme to improve its numerical stability and 
shorten the computation time.

The primary advantage of the LBM is the simplicity 
of the preprocessing step, as the solver directly operates 
on binarized data retrieved from micro-CT 3D images. 
Similar to the PNM approach, constant pressure boundary 
conditions were applied at inlet and outlet planes, 
resulting in a pressure difference of 0.005 in lattice 
pressure units. This corresponded to approximately 
1 Pa in SI units considering the predetermined solver 
parameters. Due to the unsteady nature of flow simulated 
in LBM solvers, precautions were taken to ensure that the 
sample’s conductivity and permeability were calculated 
based on the flow rate approaching its asymptotic limit. 
The resulting velocity field in the sample was used to 
calculate the total flow rate through the medium, and 
after conversion from lattice units to SI units (Krüger et 
al., 2017), permeability and hydraulic conductivity were 
derived.

3  Results

3.1  Reconstruction of samples’ 
microstructures

Samples were scanned in a FDM-printed fixture later used 
in laboratory permeability measurements. To mitigate the 
possibility of soil particles displacing due to high angular 
acceleration of micro-tomograph holder while scanning, 
the top cover accommodated a piston providing small 
compressive force to the sample. Figure 6 shows rendered 
volumetric data of samples as processed by Bruker 
CTvox software. Figure 7 shows the process of extracting 
volumes of interests (VOI) from the retrieved data and 
their resulting binarized form. VOIs of arbitrarily chosen 
dimensions of 400³, 600³, and 800³ voxels have been 
selected to systematically gauge each method’s sensitivity 
to varying VOI sizes. 

3.2  Laboratory measurements

The conductivities of the specimens were concurrently 
measured under consistent environmental conditions. 
Prior to the final measurement, samples underwent 

Figure 4: General concept of a pore-network model.

Figure 5: Analogous model of the resistor network.



8    Bartłomiej Bodak, Maciej Sobótka

immersion in water for a duration of 12 h. Subsequently, a 
series of test runs was conducted under elevated pressure 
difference to ensure the complete saturation of the soil 
within the fixture. Raw data acquired with the help of 
computer-vision-augmented measuring system were 

subjected to preprocessing to eliminate readings distorted 
by the pipe holders and erroneous readings. Outcomes 
of these tests as well as the optimal fits of the theoretical 
flow curves are depicted in Figure 8.

Figure 6: Rendered view of reconstructed a) sample 1, b) sample 2, and c) sample 3.

a) b) c) 

Figure 7: Exemplary slice, volumes of interest and binarized image of a) sample 1, b) sample 2, and c) sample 3.
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a) b)

c) d)

Figure 8: Results of measurements in permeameter and best-fitting theoretical curves: a)  sample 1, b) sample 2, and c) sample 3, and d) 
reference run without the sample attached. The vertical axis is scaled logarithmically for better fitting evaluation.



10    Bartłomiej Bodak, Maciej Sobótka

The measured hydraulic conductivity values have 
been corrected to account for the internal flow resistance 
imposed by the apparatus (i.e. filters) using the following 
equation (Eq. 8):

𝐾𝐾𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝜇𝜇𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠

𝜇𝜇𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠
𝐾𝐾𝐾𝐾𝑚𝑚𝑚𝑚𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

−
𝜇𝜇𝜇𝜇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐾𝐾𝐾𝐾𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (8)

where Lsamp is the length of the soil sample measured 
from the general CT scan [m], Kmeas is the measured series 
conductivity of the sample and system [m/s], Lap is the 
length of the fictional sample, reflecting flow resistance 
of the measurement setup with no sample attached [m], 
and Kap is the measured conductivity of the system in the 
reference test (i.e. without any sample) [m/s]. The results 
of calculations are depicted in Table 3.

The corrected soil conductivity values obtained 
through the employed apparatus demonstrated fair 
coherence with the results of a conventional falling-head 
test in oedometer. However, they present larger variabilities 
among individual tests despite similar environmental 
conditions and constant water temperature. Additionally, 
observations unveiled that the highly decreasing trend in 
permeability of sample 2 across successive trials (brown 
trace in Fig. 8 b) represents the first test, while the green 
trace denotes the last measured run through the sample, 
which may indicate influence of swelling, compaction-
induced changes in the microstructure of this sample, or 
filter clogging in the duration of the trial. 

Moreover, it is also worth noting that the theoretical 
curves employed as best-fitting models to the experimental 
measurements of sample 2 exhibited the worst alignment 
with the outcomes of the tests. This inconsistency between 
measured results and theoretical predictions may suggest 
the need of deeper inquiry into the testing methodology 
for samples containing larger amounts of silt and organic 
compounds (i.e., lignite).

3.3  Empirical relations

Hydraulic conductivity of samples was assessed with 
the use of empirical formulae described in Section 2.4. 
Effective diameters used for calculations were derived 
from interpolated values of grain size distribution curves 
obtained from results of granulometric analysis.  

The application of empirically derived formulae to 
estimate soil conductivity yielded a highly varied range 
of results as anticipated. Among them, the Seelheim 
formula stood out by correctly showing that sample 3 had 
the highest conductivity, while sample 2 had the lowest. 
The USBR formula in comparison generally provided 
results that were closest to the actual experimentally 
acquired values (8.94E-5 m/s, 1.15E-5 m/s, and 8.53E-5 
m/s for samples 1–3 accordingly). Beyer, Hazen, Chapuis, 
and Seelheim formulae have consistently provided 
overestimated values of conductivity for samples 1 and 3. 
Interestingly, those formulae (apart from Chapuis formula) 
have shown smaller error for finely grained sample 2.It is 
also important to note that there was a significant variation 
in  the  results for each sample when different methods 
were used. This highlights the  need for utilizing several 
distinct formulations when estimating permeability with 
the use of empirical relations, as the outcomes may vary 
significantly based on the chosen approach. The resulting 
conductivity values were summarized in Table 4.

3.4  Simulated sifting

Figure 9 presents grain size distribution curves acquired 
through the  simulated sifting method, contrasting them 
with the actual grain size distribution curves derived 
from laboratory granulometric analysis. Figure 10 shows 
relative differences between hydraulic conductivity values 
calculated with the use of data from simulated sifting and 
those from granulometric analysis.

Table 3: Results of measurements with the described small-scale permeameter setup.

Sample no. Sample name Mean conductivity derived 
from the best-fit curve

Conductivity of 
the apparatus 

Hydraulic conductivity in the 
measurement temperature

Hydraulic 
conductivity at 10°C

Kequiv [m/s] Kap [m/s] Kex [m/s] Kcorr [m/s]

1 Fine sand 2.663E-5 4.927E-3 2.678E-5 1.951E-5

2 Fine sand with 
lignite

4.457E-6 4.461E-6 3.250E-6

3 Medium sand 6.183E-5 6.262E-5 4.562E-5
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The simulated sifting method demonstrated 
satisfactory outcomes across all three samples. For soils 
with finer particle compositions (samples 1 and 2), slight 
differences appeared along the lower part of the grain size 
distribution curves. This behavior may be attributed to the 
possible aggregation of finer particles into larger grains, 
likely arising from intricacies in micro-tomography 
scanning, reconstruction, and further binarization of the 
datasets. Despite these differences, the simulated curves 
provided a satisfactory alignment with the measured 
values, which was reflected by the high determination 
coefficients for these samples (R2≥0.945). The magnitude 
of error can be potentially reduced by  fine-tuning the 
scanning resolution and parameters of the segmentation 
process for such samples. Notably, expanding the volume 
of interest did not significantly alter the quality of the 
results.

For sample 3, characterized by the broader distribution 
of grain sizes, the  method yielded slightly worse results 
for the overall fitting; however, this reduction was more 
prominent for the larger sizes of grains. Additionally, 
expansion of the VOI led to an improvement in a curve 
alignment, suggesting that the accuracy is impeded by the 

high size of representative elementary volume or  lack of 
larger grains in scanned sample (given that the physical 
dimension of  VOI at 8003 voxels roughly corresponds to 
6.3 mm in the sample size).

However, it is important to note that for hydraulic 
conductivity estimation with empirical formulae, greater 
significance lies in the precise capture of the lower part 
of the grain size distribution curves, which notably yields 
best results for sample 3.

3.5  Semi-theoretical method based on 
microstructure properties

Semi-theoretical permeability estimation in this study 
was performed using the Kozeny–Carman equation 
(Eq. 7) and methodology detailed in Section 2.5.2. In 
contrast to simplified approaches commonly presented 
(Carrier, 2003; Kaviany, 1995), both tortuosity and specific 
surface area (SSA) were numerically computed using 
3D-image data. The selected number of random walkers 
in the tortuosity simulation proved to be adequate, as 
the outcome remained fairly constant with its further 

Table 4: Results of estimation using empirical equations.

Sample no. Sample name Method Effective diameter Effective diameter value Hydraulic conductivity at 10°C
[-] [-] de [mm] K [m/s]

1 Fine sand Seelheim d50 0.273 2.661E-4

Hazen d10 0.163 3.031E-4

Sauerbrey d17 0.189 2.045E-4

USBR d20 0.201 8.937E-5

Beyer d10 0.163 2.927E-4

Chapuis d10 0.163 4.125E-4

2 Fine sand with 
lignite

Seelheim d50 0.138 6.799E-5

Hazen d10 0.062 N/A

Sauerbrey d17 0.077 1.151E-4

USBR d20 0.082 1.150E-5

Beyer d10 0.062 3.994E-5

Chapuis d10 0.062 2.363E-4

3 Medium sand Seelheim d50 0.381 5.182E-4

Hazen d10 0.143 2.01E-4

Sauerbrey d17 0.179 1.254E-4

USBR d20 0.196 8.531E-5

Beyer d10 0.143 2.037E-4

Chapuis d10 0.143 2.496E-4
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a)

b)

c)

Figure 9: Comparison of measured and simulated grain size distribution curves from different sizes of VOI for a) sample 1, b) sample 2, and 
c) sample 3.
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increase. An illustrative representation of walkers’ trails, 
acquired with the help of ParaView software (Ahrens et 
al., 2005), is provided in Figure 11.

In the case of samples 1 and 2, changes in tortuosity 
and SSA were not notably influenced by the expansion 
of the VOI extent, leading to relatively stable estimations 
of conductivity for these samples. However, for sample 3, 
there was a consistent increase of conductivity as a result 
of altering the VOI. The summarized outcomes of the 
described procedure were presented in Table 5.

3.6  Pore-network model

Computations were conducted according to the procedure 
described in the documentation of the OpenPNM 
framework (Gostick et al., 2016). Figure 12 (a)-(c) presents 
rendered pore-network models of samples 1–3 at 4003 
VOI sizes. Each sphere represents a pore-type element, 
while each tube represents a throat-type element. Color 
denotes the physical diameter of each element. The flow 

Figure 10: Relative differences between hydraulic conductivity calculated with data from simulated sifting and those from granulometric 
analysis.

Figure 11: Tracks of random walkers after 1250 time steps in sample 
3. Only 10% of all workers are shown for clarity. 
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was simulated along the Z-axis of the samples presented 
here, which was coherent with the flow direction in 
permeameter. Results of simulations are shown in Table 6.

Extracted pore networks reflected the observed 
characteristics of each specimen’s pore space. However, 
their topological simplification may be a major 
factor contributing to the observed overestimation of 
permeability values, especially for the second sample. 
This possible reason is supported by comparison of the 
tortuosity (1.479), specific surface area (62941 1/m), and 
porosity (0.584) of the network in question with values 
obtained from image analysis, which reveals substantial 
discrepancies.

3.7  Lattice-Boltzmann method

In this study, lattice-Boltzmann simulations were 
conducted using Taichi-lang (Hu et al., 2019) based 
implementation (Yang et al., 2022). To facilitate high 
computational demands, a different machine had to be 
used as LBM is demanding in terms of both CPU/GPU and 
RAM. Despite its well-recognized suitability for massively 
parallel computations, the practical applicability of that 
advantage was hindered by the substantial dimensions 
of the selected VOI and resolution of the scans. These 
factors prevented the full harnessing of the parallelism, 
as the sizes of the samples exceeded what even high-
end highly VRAM-equipped GPUs could accommodate – 

Table 5: Results of estimation using the Kozeny–Carman equation.

Sample no. Sample 
name

VOI size Porosity derived 
from image data

Tortuosity in 
direction of the 
flow

Specific surface 
area per unit 
volume

Permeability Hydraulic 
conductivity at 
10°C

[vx] φimg [-] τ [-] S [1/m] k [µm2] K [m/s]

1 Fine sand 4003 0.365 1.937 38748 16.587 1.242E-4

6003 0.364 1.935 38447 16.674 1.249E-4

8003 0.363 1.897 37820 17.378 1.301E-4

2 Fine sand 
with lignite

4003 0.511 1.732 72321 24.639 1.845E-4

6003 0.511 1.722 73061 24.283 1.818E-4

8003 0.506 1.763 72932 22.645 1.696E-4

3 Medium 
sand

4003 0.309 2.009 40988 7.323 5.484E-4

6003 0.317 1.980 40043 8.604 6.443E-4

8003 0.317 1.946 37079 10.209 7.645E-4

Table 6: Results of simulations using the pore-network modeling approach.

Sample no. Sample name VOI size Porosity derived 
from image data

Permeability Hydraulic conductivity 
at 10°C

[vx] φimg [-] k [µm2] K [m/s]

1 Fine sand 4003 0.365 23.666 1.786E-4

6003 0.364 23.587 1.780E-4

8003 0.363 24.061 1.816E-4

2 Fine sand with lignite 4003 0.511 28.433 2.145E-4

6003 0.511 27.969 2.110E-4

8003 0.506 27.338 2.063E-4

3 Medium sand 4003 0.309 17.311 1.306E-4

6003 0.317 20.301 1.532E-4

8003 0.317 22.087 1.667E-4
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such as the Nvidia RTX3090 with 24GB of VRAM, where 
the practically feasible domain size was found to be 
constrained to less than 5003  voxels. Consequently, for the 
purpose of benchmarking, all simulations were conducted 
with CPU-based implementation for accurate comparison 
and evaluation. Even though analyses were made only 
for 4003 and 6003 VOIs, larger sizes would have made the 
computation impractically long.

Furthermore, it was also observed that the rate of 
convergence differed not only based on the domain size 
but also between samples themselves. Sample 2 exhibited 

the fastest convergence of flow rate toward its asymptotic 
limit, while sample 1 displayed the slowest. Thus, for 
accurate results, the flow rate approach to its limit should 
be closely monitored. Finally, it is worth noting that for 
samples 1 and 3, the computed permeability values 
decreased with the increase of the VOI extent, contrary to 
the behavior of sample 2. Table 7 presents the permeability 
and conductivity values, as derived from the LBM flow 
simulation. Figure 13 (a)–(c) depicts streamlines of the 
flow through the samples.

a) b)

c)

Figure 12: Pore network extracted from a) sample 1, b) sample 2, and c) sample 3 with a zoomed fragment of the network. 
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Table 7: Results of simulations using the lattice-Boltzmann method.

Sample no. Sample name VOI size Porosity derived from 
image data

Permeability Hydraulic 
conductivity at 10°C

[vx] φimg [-] k [µm2] K [m/s]

1 Fine sand 4003 0.365 23.489 1.758E-4

6003 0.364 17.567 1.317E-4

2 Fine sand with lignite 4003 0.511 20.923 1.565E-4

6003 0.511 23.193 1.736E-4

3 Medium sand 4003 0.309 16.778 1.259E-4

6003 0.317 15.396 1.151E-4

   a)       b)

            

c)

Figure 13: Streamlines of flow calculated using LBM: a) sample 1, b) sample 2, and c) sample 3.
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Figures 14: Calculated and measured hydraulic conductivities for a) sample 1, b) sample 2, and c) sample 3.
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4  Discussion of results
For all three specimens, the hydraulic conductivity was 
assessed based on the analysis of 3D images obtained from 
micro-CT. Generally, for most VOI sizes chosen, derived 
data provided comparable results. They were summarized 
in Figure 14 for the individual samples and different VOI 
sizes, namely, 4003, 6003, and 8003 [vx]. Vertical lines 
represent values obtained from empirical formulae and 
laboratory granulometric analysis, while solid blue 
and green lines depict conductivity obtained from test 
in oedometer and designed small-scale permeameter, 
respectively.

Applying empirical formulae to estimate soil 
hydraulic conductivity based on either the granulometric 
data or the described micro-CT-based procedure yielded 
a  diverse range of results. Among different approaches, 
USBR formula stood out by providing a closest alignment 
to laboratory measurements by utilizing both the real 
and simulated grain size distributions as an input. 
The variation of results, depending on the equation 
used, emphasizes the necessity of considering multiple 
formulations to prevent misestimation of the conductivity. 

Notably, for finer particle compositions, subtle 
deviations between the actual and estimated distribution 
of the grain sizes emerged primarily in the lower 
spectrum of the effective diameters. These differences 
were attributed to the aggregation of finer particles into 
larger entities during the processes of scanning and 
binarization. However, these distinctions did not hinder 
the curve alignment, as reflected in high values of the 
determination coefficient. In the case of sample 3 that 
exhibited a wider range of the grain sizes, the simulated 
curve became misaligned in the upper range of values. 
This issue was mitigated by utilizing larger VOI, suggesting 
the impact of the high REV size. Nonetheless, empirically 
derived permeability for this sample showed the closest 
agreement with values computed from laboratory 
granulometric analysis.

The results acquired with the Kozeny–Carman 
equation closely resembled the measurements for sample 
3, while showing overestimation for samples 1 and 2. This 
might suggest that for the analyzed samples, the fine-side 
limit of validity has been approached. Content of organic 
material in sample 2 might also have contributed to the 
misestimation of its permeability.

Similar conclusions were made in accordance to 
the outcomes of pore-network and lattice-Boltzmann 
simulations. The highest similarity to the measured 
values was observed during analyses of sample 3, while 
the lowest value was observed in case of sample  2. The 

pore-network modeling approach was found to be the 
least accurate for all reviewed specimens possibly due to 
the high level of oversimplification of the microstructure.

Regarding the essential limitations of the methods 
employed in the study, the following issues are to be noted. 
Apparently, the scale effect remained a challenge that has 
not been fully mitigated. Even considering the largest 
VOI size that has been used for analysis, the numerical 
simulations were conducted on approximately 60% of the 
cross-sectional area of the scanned specimens. It has been 
shown that especially for sample 3, the accuracy of the 
results was influenced by the size of the VOI chosen. This 
underscores the importance of detailed representative-
elementary volume (REV) analysis and finds the optimal 
scanning resolution prior to actual calculation of the soil 
hydraulic properties for a reliable and effective outcome.

The discrepancies between the estimated and 
measured values might have been also caused by the fact 
that most single-phase transport simulations do not take 
into account the effects present at the solid phase–fluid 
interface, which become increasingly significant in media 
with small-sized pores. That possibility gained credibility, 
considering that the outcomes of the simulations within 
sample 3, characterized by the overall thickest pores, 
exhibit closest alignment with the measured results. 
Another factor to be considered is the relationship between 
the permeability of the soil, applied external pressure, 
and its compaction. For a meaningful comparison of 
methodologies, it is crucial that the conditions of both 
laboratory measurements and scanning align in terms of 
the porosity of the sample in consideration. The potential 
impact of filter clogging and specimen swelling is also a 
consideration that cannot be dismissed when dealing 
with silty and organically contaminated soils.

4.1  Benchmark of the employed methods

Computational efficiency is a matter of great importance 
in investigation of soil properties from reconstructed 
images, especially considering large datasets to process. 
The minimal and maximal times of computation observed 
for different methods have been provided in Table S1 in 
supplementary materials, as well as the overview of the 
computational platform specifications.

The computation time varied among individual 
samples, with sample 3 generally requiring the shortest 
calculation time, while sample 2 the longest. That can 
be attributed to the fact that these specimens represent 
opposite ends of the porosity and feature number 
spectrum. The pore-network-based simulation exhibited 



Insights Into Estimation of Sand Permeability: From Empirical Relations to Microstructure-based Methods    19

the shortest computation time for all assessed VOI 
sizes, but it also showed the lowest overall accuracy. 
Interestingly, the computationally expensive lattice-
Boltzmann method did not yield the most accurate results 
for the analyzed samples. 

5  Summary and conclusions
The objective of the research was to assess different 
methodologies to determine the permeability of sandy 
soils. This involved analyses utilizing 3D microstructure 
images from micro-CT as well as the results from direct 
laboratory measurements of hydraulic conductivity. Three 
sand samples of different composition and grain size 
distribution were tested.

It was found that the image-based approximation 
tends to set upper bound of permeability estimation, while 
laboratory measurements mark the lower bound. The 
latter may actually underestimate hydraulic conductivity 
as apparent decrease in assessed conductivity of finer 
samples (1 and 2) over the subsequent tests and filter 
clogging were observed. 

The custom-made permeameter was built so that 
exactly the same samples were tested in both approaches. 
After all, falling-head tests in the small-scale permeameter 
as well as in the conventional oedometer resulted in 
convergent values of hydraulic conductivity despite the 
variation in sample size. It follows that the comparison 
of test results on small-scale samples (typically used 
in micro-CT) with those used in standard laboratory 
investigations is justified for the sands considered.

The influence of the adopted VOI size was verified 
in the image-based approach. For samples 1 and 2 pore-
network modeling, Kozeny–Carman equations and 
simulated sifting methods proved to be the least affected 
by the size of chosen VOI. The differences were greater 
for sample 3 containing the largest grains. This suggests 
that the condition of representativeness of the chosen VOI 
might not have been fulfilled for that particular specimen.

The benchmark analysis demonstrated that 
pore-network modeling was the most time-efficient 
computational method reflecting actual pore 
microstructure morphology while not requiring so 
much time and computational resources as the lattice-
Boltzmann method. At the same time, both the Kozeny–
Carman and simulated sifting approaches presented a 
balanced computational efficiency. Furthermore, utilizing 
modern imaging techniques made the Kozeny–Carman 
equation a practical tool for evaluating the hydraulic 

properties of porous media. It stems from solid theoretical 
foundations and, at the same time, microstructure 
morphology obtained from micro-CT allows accurate 
determination of parameters needed. 

Summing up, microstructure image-based methods 
utilized in this study offer a viable addition to conventional 
permeability estimation approaches and a  promising 
alternative to laboratory testing. To bridge the existing 
gaps between these two areas, future research will focus 
on representative elementary volume size determination 
and adoption of optimal resolution. This represents the 
planned direction for further investigations as a follow-up 
to this study.
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Table S1: Computational efficiency of the methods presented.

Method VOI size Minimal measured 
total computation 
time

Maximal measured 
total computation time

Computational platform

[vx] tmin tmax CPU, CPU clock, RAM size and type, GPU and 
VRAM size (if applicable)

Simulated sifting 4003 9 min 11 min AMD Ryzen™ 7 5800H @ 3.2 GHz, 32 GB DDR4 
RAM

6003 34 min 36 min

8003 81 min 95 min

Kozeny–Carman 4003 5 min 7 min

6003 13 min 13 min

8003 32 min 58 min

Pore-network 4003 2 min 5 min

6003 7 min 18 min

8003 18 min 42 min

Lattice Boltzmann 
CPU

4003 22 h 31 min 34 h 35 min 2 x Intel® Xeon® E5-2687W @ 3.1GHz, 128 GB 
DDR3 RAM

6003 75 h 58 min 115 h 18m

Lattice Boltzmann 
GPU

4003 69 min 105 min AMD Ryzen™ 9 5950x @ 3.4 GHz, 64 GB DDR4 
RAM, NVIDIA RTX™3090 24 GB VRAM


